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In this supplementary material we show how to derive
the free energy as well as the necessary update equations.
Moreover, we present additional experimental results.

Notation. In the following we will make use of an over-
loaded notation for both indexing vectors and concatenating
scalars (into vectors). That is, whenever a vector f is given,
we retrieve its ith element via (f)i. On the other hand, we
concatenate scalar elements fi into the vector (fi)i.

A. Free Energy

We begin by deriving the free energy as stated in Eq. (14)
of the main paper. For conciseness, we express some of the
frequently appearing integrals directly as expectations, i.e.

∫
q(x)φ(x) dx ≡ 〈φ(x)〉q(x). (18)

Given the independence assumptions of q(x,h, l) in
Eq. (12) we can thus rewrite Eq. (13) as

F (q,a) = −〈log p(y |x,h,a)〉q(x,h) (19)
− 〈log p(x, l)〉q(x,l) − 〈log p(h)〉q(h)
+ 〈log q(x)〉q(x) + 〈log q(h)〉q(h)
+
∑
i,γ

〈log q(li,γ)〉q(li,γ).

As derived in [8, 18, 25], the entropy terms of the approxi-
mating distribution simplify to

〈log q(x)〉q(x) = − 1

2

∑
i

log(σx)i + const, (20)

〈log q(h)〉q(h) =
∑
i

ri log ri + (1− ri) log(1− ri),

(21)

〈log q(li,γ)〉q(li,γ) =
∑
j

vi,γ,j log vi,γ,j . (22)

The term involving the sparse image prior is similarly de-
rived in [18] and simplifies to

− 〈log p(x, l)〉q(x,l) =

〈∑
i,γ,j

vi,γ,j
‖fi,γ(x)‖2

2σ2
j

〉
q(x)

(23)

+
∑
i,γ,j

vi,γ,j(log σj − log πj)

+ const.

To simplify further, we rely on each derivative filter fi,γ in
Eq. (23) corresponding to a linear operator Dγ , i.e.

fi,γ(x) = (Dγx)i. (24)

Inserting Eq. (24) into Eq. (23) and expanding the expecta-
tion, we can explicitly express it in terms of the moments
(µx,σx) of q(x):

− 〈log p(x, l)〉q(x,l) =∑
i,γ,j

vi,γ,j
2σ2

j

(
Dγµx ◦Dγµx + (Dγ ◦Dγ)σx

)
i

+
∑
i,γ,j

vi,γ,j(log σj − log πj) + const. (25)

where ◦ denotes the pointwise Hadamard product.
Using the prior on the segmentation as defined in Sec-

tion 4 of the main paper we obtain

−〈log p(h)〉q(h) = const−
〈∑

i

−λ0hi

+
∑

(i,j)∈N

−λ [hi 6= hj ]
〉
q(h)

= λ0
∑
i

ri + λ
∑

(i,j)∈N

ri + rj − 2rirj

+ const. (26)

Note that Eq. (26) extends [25] by including the addi-
tional bias term

(
λ0
∑
i ri
)

favoring a background segmen-
tation. The last term to be derived involves the expected
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log-likelihood

− 〈log p(y |x,h,a)〉q(x,h) = const

+

∫
q(x)q(h)‖h◦(K

ax)+(1−h)◦x−y‖2
2σ2
n

dx dh, (27)

induced by the Gaussian noise assumption of Eq. (9). In or-
der to expand the expectation in Eq. (27), we face the chal-
lenge that the latent image x has a larger domain than the
blurry input image y. For this reason we introduce a crop
operator Iy that maps pixel positions of x to positions in y.
Inserting the crop operator and utilizing standard formulas
to compute expected values of quadratic norms (see, e.g.,
[42]) yields the expected log-likelihood

− 〈log p(y |x,h,a)〉q(x,h) = const (28)

+
1

2σ2
n

(
µTx
(
KaTR Ka + Iy

T (I−R) Iy
)
µx

+ rT (Ka ◦Ka)σx + (1− r)T Iy σx

− 2µTx
(
KaTR + Iy

T (I−R)
)
y + yTy

)
,

where R ≡ diag(r) and I is the identity matrix. Here,
Eq. (28) extends the uniform case in [25] for non-uniform
blur matrices Ka.

Inserting all expectations into Eq. (19), we obtain an ex-
plicit form of the free energy F (q,a).

B. Update Equations for Stage 1

Next, we give the update equations w.r.t. the variational
parameters of q as well as the motion parameters a during
the first stage (in derivative space).

Latent indicator update. Levin et al. [18] have shown how
to update the GSM (Gaussian scale mixture) indicators q(l)
in closed form. Adapting their derivation to our formula-
tion, it is not difficult to see that

vi,γ,j =
1

Zi,γ
exp

(
− 1

2σ2
j
f̂i,γ

) πj
σj
, (29)

with

Zi,γ =
∑
j

exp
(
− 1

2σ2
j
f̂i,γ

) πj
σj
, (30)

f̂i,γ =
(
Dγµx ◦Dγµx + (Dγ ◦Dγ)σx

)
i
. (31)

Image update. Isolating the terms involving µx, we obtain
the quadratic energy

F (q,a) =
1

2
µTxAxµx + bx

Tµx + const, (32)

with

Ax =
1

σ2
n

(
KaTR Ka + Iy

T (I−R) Iy

)
+
∑
γ,j

1

σ2
j

DT
γ diag(vγ,j)Dγ , (33)

bx = − 1

σ2
n

(
KaTR + Iy

T (I−R)
)

y, (34)

where vγ,j is a vector containing the parameters of the
multinomial distribution in the jth mixture component be-
ing associated with the γth derivative filter. Setting the gra-
dient of Eq. (32) to zero yields a linear system, which can
be solved efficiently, e.g. using conjugate gradient methods.
We can apply similar steps to obtain the update equation for
the diagonal covariance σx, which is given by the element-
wise inverse of the diagonal of the linear system for µx.

Segmentation update. As explained in the paper, we up-
date the parameters of the Bernoulli distribution of the seg-
mentation by variational message passing (Eq. 15). The
required unary contributions are induced by both the bias
term in the segmentation (Eq. 26) as well as the expected
log-likelihood (Eq. 28):

g(q(x),a,y) = λ01 (35)

+
1

2σ2
n

(
Kaµx ◦Kaµx + (Ka ◦Ka)σx

− 2 diag(Kaµx) y
)

− 1

2σ2
n

(
Iyµx ◦ Iyµx + Iy σx − 2 diag(Iyµx) y

)
,

where 1 is a vector of all ones.

Motion update. We now utilize the parametric nature of
our model to efficiently minimize the free energy w.r.t. a.
To this end, note that the motion parameters a exclusively
occur in the expected log-likelihood (Eq. 28) and essentially
form a quadratic norm plus an additional term accounting
for the uncertainty of the latent image. Unfortunately, the
parameters a occur non-linearly within the blur matrix Ka,
which makes it hard to obtain a closed-form solution. On
the other hand, there are very efficient methods for minimiz-
ing non-linear least squares objectives, i.e. quadratic norms
of non-linear residuals (see [41] for more details). Here, we
will adapt such a highly efficient method to our formula-
tion. To begin with, we observe that the motion parameters
a exclusively occur in a subset of terms of the expected log-
likelihood

F (q,a) ∝ 1

2

(
µTxKaTR Kaµx + rT (Ka ◦Ka)σx

− 2µTxKaTR y
)
, (36)
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where we have dropped constants as well as the factor σ2
n, as

they are not relevant for the minimization. We continue by
linearizing the blur kernels Ka around the operating point
a0 and express Eq. (36) by means of the linearized blur ker-
nels Kd with the unknown increment vector d ≡ a− a0

(see Section 3 of the paper). Note that linear and quadratic
terms involving the non-linear blur matrix can be easily ap-
proximated by terms that are linear in d, e.g.

Kax ≈ Kdx = K0x +∇a(K0x)d, (37)

rT (Ka ◦Ka)σx ≈ rT (Kd ◦Kd)σx

= dTH0(σx) d + 2 dTh0(σx)

+ rT (K0 ◦K0)σx, (38)

where we define the N × 6 matrix

∇a(K0x) =

(
∂K0

∂aj
x

)
j

, (39)

the 6× 6 matrix

H0(σx) =

(
rT
(∂K0

∂ai
◦ ∂Ka

∂aj

)
σx

)
i,j

, (40)

and the 6× 1 vector

h0(σx) =

(
rT
(∂K0

∂ai
◦K0

)
σx

)
i

. (41)

In the expressions above the advantage of the paramet-
ric model comes into play as we can efficiently compute
∇a(K0x), H0(σx) and h0(σx) by means of the derivative
filters ∂K0

∂ai
(see Section 4 in the paper). Once we adopt this

linearization, the free energy becomes (locally) quadratic in
the unknown increment vector d:

F (q,d) =
1

2
dTA0 d + dTb0 + const, (42)

with

A0 =
(
∇a(K0µx)

)T
R∇a

(
K0µx

)
+ H0(σx),

(43)

b0 =
(
∇a(K0µx)

)T
R K0µx + h0(σx)

−
(
∇a(K0µx)

)T
R y. (44)

We can now use this locally quadratic approximation to
minimize the (non-linear) free energy around subsequent
operating points. Furthermore, we can build upon regu-
larization techniques from standard non-linear least squares
methods, such as the Levenberg-Marquardt approach or use
an even more sophisticated step-size control. In our imple-
mentation we rely on the Armijo rule [39].

C. Update Equations for Stage 2
Finally, we give the update equations for the variational

parameters during the second stage (in image space).

Segmentation update. From Eq. (17) we obtain the free
energy

F̃ (q,a) = F (q,a)−
〈
λc
∑
i

hi log GMM(yi | θf ) (45)

+ (1− hi) log GMM(yi | θb)
〉
q(h)

= F (q,a)− λc
∑
i

ri log GMM(yi | θf ) (46)

+ (1− ri) log GMM(yi | θb),

augmented by one term accounting for the color statistics
of the background/foreground, respectively. In turn, the up-
date for the segmentation in stage 2 differs by one additional
unary term:

g̃(q(x),a,y) = g(q(x),a,y)

+ λc
(
− log GMM(yi | θf )

+ log GMM(yi | θb)
)
i
. (47)

Color statistics update. Let θf = {πf,j , µf,j ,Σf,j | j =

1 . . . J} and θb = {πb,j , µb,j ,Σb,j | j = 1 . . . J} be the pa-
rameters of the Gaussian mixture model for the foreground
and background colors, respectively. Then Eq. (46) can
be minimized by the expectation-maximization (EM) algo-
rithm for Gaussian mixture models, however, each update
equation is weighted by the parameters of the Bernoulli dis-
tribution of the segmentation.

For instance, updates for the foreground color statistics
are given by

αi,j =
πjN (yi |µj ,Σj)∑
k πkN (yi |µk,Σk)

, (48)

Nj =
∑
i

riαi,j , (49)

µnew
j =

1

Nj

∑
i

riαi,jyi, (50)

Σnew
j =

1

Nj

∑
i

riαi,j(yi − µnew
j )(yi − µnew

j )T , (51)

πnew
j = Nj/

∑
k

Nk, (52)

where we dropped the foreground index f for brevity.
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Figure 9. Synthesized uniform and non-uniform motion blur.

D. Synthetic Dataset
For the quantitative analysis in the paper we created a

dataset of 32 test images, divided in two subsets: uniform
linear motion and non-uniform affine motion. The test im-
ages were created by extracting objects and segmentations
from the VOC2012 dataset [40], and pasting them on top of
different backgrounds. More precisely, motion blur is sim-
ulated by iteratively warping both the extracted images and
segmentations according to either uniform or affine motion,
and pasting its warped (latent) images on top of the back-
ground. While the resulting blurred image is given by the
average of all warped latent images, the ground truth seg-
mentation is chosen to be the maximum, i.e. the union, of
all warped segmentations. Examples are shown in Fig. 9.

E. Sensitivity Analysis
We analyze the sensitivity of our approach to different

initializations. To that end, we created a synthetic exam-
ple (Fig. 9, left) of horizontal motion (a1 = 15) and mea-
sured the resulting average endpoint error of the motion es-
timation for initializations with increasingly large motion
in either vertical or horizontal direction. Table 2 shows the
resulting average endpoint errors. Unless our method is ini-
tialized with a significant motion in the incorrect (vertical)
direction, which leads to a failure (marked red), our algo-
rithm yields consistent results. Initializing with a small mo-
tion avoids such issues.

Table 2. Average endpoint error after different initializations.

|a1/4| 0.1 0.5 1 3 5 7

vertical 0.55 0.48 0.47 17.47 21.39 28.91
horizontal 0.53 0.56 0.51 0.57 0.52 0.53

F. Additional Results
We continue to show a few more results in addition to

the ones provided in the main paper. Note that some of
these examples are taken from [26].

Additional examples. While our approach is primarily
aimed at recovering object (foreground) motion, the exam-
ple in the last row of Fig. 7 of the main paper has already
shown that we can also estimate motion and segmentation
from a motion blurred background. Figures 10 and 11 show

two more such examples in which a sharp bicyclist is shown
before a motion-blurred background. Our approach cor-
rectly identities the background scene as the motion-blurred
region (“foreground”) and vice versa.

Figures 12 and 13 show additional results for a purely
rotational ferris wheel, as well as a motion-blurred roller-
coaster. Note that the rollercoaster is segmented very well,
but the ferris wheel less so. While our variational frame-
work identities the rotational motion correctly, the blurry
foreground of the outer wheel blends with the background,
hence our approach does not properly pick up these regions
as part of the blurry foreground.

Failure cases. In Figs. 14 and 15 we show two examples
for which the variational framework fails to estimate either
a correct motion model or a segmentation. In the first ex-
ample (Fig. 14) both estimating the motion model as well as
estimating the segmentation fails. To be successful, our ap-
proach requires a sufficiently large region of observable mo-
tion blur; if this is not the case our algorithm may end up in
poor local minima. This is in particular the case for estimat-
ing the correct motion, since the motion updates are based
on iteratively optimizing a non-linear objective by (locally)
quadratic approximations. Also observe how the inference
heavily picks up the horizontal structures in the background
wall on the right-hand side, as they provide evidence for
horizontal motion blur.

The second example (Fig. 15) shows how the variational
framework fails to estimate the correct motion model due to
directional ambiguities. Note how the top left motion vec-
tors point to the left, while a major part of the estimated mo-
tion vectors point to the right. In our approach we tackle this
ambiguity by explicitly modeling symmetric blur kernels,
however, the motion parameters still allow for two equally
good explanations: Either the background translates to the
left or to the right. In practice we overcome this problem by
initializing the motion estimate with a slight bias towards
either direction. However, this example indicates that this
bias alone may not always be enough to resolve the ambi-
guities one may observe during the inference process.
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(a) Blurry input (b) Parametric motion + motion segmentation

(c) Blurry foreground (d) Static background

Figure 10. Motion from a blurry background.

(a) Blurry input (b) Parametric motion + motion segmentation

(c) Blurry foreground (d) Static background

Figure 11. Motion from a blurry background.

v



(a) Blurry input (b) Parametric motion + motion segmentation

(c) Blurry foreground (d) Static background

Figure 12. Rotational motion from a ferris wheel.

(a) Blurry input (b) Parametric motion + motion segmentation

(c) Blurry foreground (d) Static background

Figure 13. Affine motion from a rollercoaster.
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(a) Blurry input (b) Parametric motion + motion segmentation

(c) Blurry foreground (d) Static background

Figure 14. Motion estimation may fail if the blurry region is too small in comparison to the background.

(a) Blurry input (b) Parametric motion + motion segmentation

(c) Blurry foreground (d) Static background

Figure 15. Motion estimation may fail due to directional ambiguities.
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