
UNIVERSITY OF MANNHEIM

DEPARTMENT OF MATHEMATICS AND

COMPUTER SCIENCE

 

ECTS 2000/2001  1 

     University of Mannheim 

 

 

School
�

 of Business Administration L 5, 6 

 D-68131 Mannheim 

 Phone xx49 - 621 - 181 -1470 

 xx49 - 621 - 181 - 1472 

 Fax xx49 - 621 - 181 - 1471 

 

 

 

 

 

 

ECTS Information Package 

2000/2001 

 

 

 

 

ECTS 

European Community Course Credit Transfer System 

 

Analysis of a Deterministic Annealing Method

for Graph Matching and Quadratic Assignment

Problems in Computer Vision

DIPLOMA THESIS

by
Stefan Roth

Computer Vision, Graphics, and Pattern Recognition Group

Mai 2001

Thesis Supervisor: Prof. Dr. Christoph Schnörr
Co-Referee: Prof. Dr. Matthias Krause





Odi et amo. Quare id faciam, fortasse requiris.
Nescio, sed fieri sentio et excrucior.

Catullus, Carmen 85





Preface

This thesis was written in partial fulfillment of the requirements for attaining the Diploma
degree in “Technische Informatik” (Computer Science and Engineering) at University of
Mannheim, Mannheim, Germany.

It is the result of research conducted at the Computer Vision, Graphics, and Pattern
Recognition Group, which is part of the Department of Mathematics and Computer
Science at University of Mannheim. The work was supervised by Prof. Dr. Christoph
Schnörr, whom I wish to thank very much for giving me the opportunity to work in the
stimulating environment of his group as well as for his support during the creation of
this work.

I am indebted to Christian Schellewald, Daniel Cremers, Dr. Joachim Weickert, and
all other people of the CVGPR-Group for their valuable suggestions and discussions as
well as for the pleasant working atmosphere. I am much obliged to Florian Tischhäuser
for his patience and helpful contributions while he shared the office with me. Special
thanks also goes to Matthias Heiler, who particularly assisted me with English gram-
mar.

Finally, I wish to thank my parents Klaus-Dieter and Waltraud Roth for their contin-
uous support during my studies and during the creation of this thesis.

v





Abstract

View-based object recognition is a central area of computer vision research. In many
approaches this amounts to solving graph matching problems. This thesis analyzes the
soft-assign quadratic assignment algorithm, a recent deterministic annealing method for ap-
proximately solving graph matching and quadratic assignment problems proposed by
Gold and Rangarajan [7]. Since both problems are NP-hard, approximation algorithms
with polynomial running time are very important. After a step-by-step derivation of
the algorithm, the first part of this work analyzes the soft-assign quadratic assignment
algorithm theoretically regarding parameter choice and convergence related properties.
Furthermore, the applicability to special problem classes is studied. The relation to other
neural network techniques is described as well. The second part of this thesis is devoted
to an experimental analysis of the algorithm using several thousand graph matching and
quadratic assignment problems of various type. Finally, the robustness of the algorithm
with respect to changes of the algorithm parameters is studied.

Categories and subject descriptors: G.2.2 Graph theory — Graph algorithms; G.2.1 Com-
binatorics — Combinatorial algorithms; I.4.8 Scene analysis — Object recognition

Keywords: graph matching, weighted graphs, quadratic assignment problem, determin-
istic annealing, soft-assign, feature matching

Zusammenfassung

Ansichten-basierte Objekterkennung ist ein zentrales Gebiet der Forschung im Bereich
Maschinensehen. In vielen Ansätzen ist diese äquivalent zum Lösen von Graph-
Matching Problemen. Die vorliegende Diplomarbeit untersucht den Soft-Assign Qua-
dratic Assignment Algorithmus, einen deterministischen Annealing Ansatz, um Graph-
Matching und Quadratic-Assignment Probleme näherungsweise zu lösen. Dieser wurde
von Gold und Rangarajan [7] vorgeschlagen. Da beide Probleme NP-schwer sind, kommt
Näherungsalgorithmen, die eine polynomielle Laufzeit besitzen, eine besondere Bedeu-
tung bei. Nach einer schrittweisen Herleitung dieses Verfahrens wird im ersten Teil die-
ser Arbeit der Soft-Assign Quadratic Assignment Algorithmus theoretisch hinsichtlich
Parameterwahl und Konvergenzeigenschaften untersucht. Weiterhin wird die Anwend-
barkeit auf spezielle Problemklassen erläutert. Die Verbindung zu Neuronalen Netzen
wird ebenfalls beschrieben. Der zweite Teil dieser Diplomarbeit ist der experimentel-
len Analyse dieses Algorithmus mittels tausender verschiedener Graph-Matching und
Quadratic-Assignment Probleme gewidmet. Die Robustheit des Algorithmus bezüglich
der Änderung seiner Parameter wird ebenfalls untersucht.
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Notation

The following section summarizes the notational conventions used throughout this
thesis. It is complemented by table 0.1, which sums up important symbols used.

Vectors are typeset in bold lower case letters, e. g., x. The elements of a vector are
denoted as a non-bold lower case letters, i. e., the i-th element of vector x is noted as
xi.

Matrices are represented by bold capital letters, e. g., A. The elements of a matrix
are typeset in non-bold capital letters using a row-major order for indexing, i. e., Aij
represents the element in the i-th row and the j-th column of matrix A. Arrays are noted
in a similar fashion; in case of more than two dimensions only the number of indices is
changed. Occasionally, indices may be grouped using a semicolon, e. g., Aij;kl represents
a 4-dimensional array.

If certain symbols are used within an iteration scheme, the iteration number is
sometimes clarified with a superscript, i. e., M(n) represents matrix M at iteration step
n.

Symbol Meaning

xT , AT Transposed vector respective matrix

tr{A} Trace of matrix A

‖·‖F Frobenius norm of a matrix

⊗ Kronecker product of two matrices (see also A.2)

In Identity matrix of size n× n

1n×m Matrix of ones of size n×m

0n×m Zero matrix of size n×m

diag{x} Diagonal matrix constructed using the elements of vector x

vec(A) Vector obtained by stacking the columns of a matrix A

λmax(A), λmin(A) Maximal and minimal eigenvalue of matrix A; the
argument may be skipped in a non-ambiguous context

Πn Set of all permutations

Π̂n Set of all permutation matrices of size n× n

Π̃n,m Set of all match matrices of size n×m
Table 0.1: Further notational conventions
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Symbol Meaning

P Permutation matrix

M Assignment matrix (doubly stochastic)

C Generalized quadratic cost matrix of a QAP

B Linear cost matrix of a QAP
Table 0.1: Further notational conventions
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CHAPTER 1
Introduction

1.1 Introduction and Overview . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Graph Matching and Quadratic Assignment Problems . . . . . . . . 3

1.3 Some Example Quadratic Assignment Problems . . . . . . . . . . . 8

1.4 Well-known Approximation Algorithms . . . . . . . . . . . . . . . . 10

1.1 Introduction and Overview

Visual recognition of objects is one of the central problems in computer vision research.
Several methods of representing objects for recognition in computer vision systems have
been proposed; among others, view-based object representations gained considerable
interest. One common way of representing object views for recognition is a set of image
features with relations on them.

Local image features may, for example, include points, line segments, or curve
segments. A powerful way of describing links between features are pairwise relations
(in a mathematical sense), which have a real value attached that encodes, e. g., the
similarity of the features or their spatial proximity. A set along with pairwise relations
can be represented as a simple1, weighted, undirected graph. Figure 1.1 gives an example of
such a view-based graph (without showing the similarity measures). Thus, recognizing
objects by comparing features and relations obtained from two views can be reduced
to comparing two corresponding graphs. Comparing graphs is better known as inexact
graph matching2, i. e., finding the correspondence between the nodes of the graphs that
maximizes their similarity.

1A graph without self-loops.
2Inexact matching refers to matching of non-isomorphic graphs. It should not be confused with approxi-
mately solving matching problems.
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INTRODUCTION

Figure 1.1: A hand designed graph using automatically detected features with 38 nodes.
The features were detected using the publicly available feature extraction system FEX [1].

Unfortunately, graph matching is a hard combinatorial optimization problem; in par-
ticular, it is NP-hard. This makes solving matching problems with medium-sized graphs
of, e. g., 20 nodes intractable on today’s computers. Therefore, there is a strong interest
for approximation algorithms that find good suboptimal solutions and have a low-order
polynomial time complexity. A graph matching algorithm that gained particular atten-
tion through its excellent experimental performance is the soft-assign quadratic assignment
algorithm proposed by Rangarajan et al. [24]. This thesis provides an analysis of the the-
oretical and experimental properties of this algorithm. Theoretical aspects include the
evaluation of convergence related characteristics and the estimation of algorithm param-
eters based on theoretical insights. This is complemented by assessing the performance
of the algorithm for various problems and the robustness of the algorithm with respect
to parameter changes. The reader should note that this thesis is not concerned with the
techniques for obtaining graphs from object views.

In the remainder of this chapter, we will formally introduce the graph matching
problem and later show it to be a special case of the quadratic assignment problem, a clas-
sical problem in combinatorial optimization. Following that, we will formally introduce
quadratic assignment problems, or shortly QAPs, supplemented by several important
formulations and prominent examples. Finally, a brief summary will be given about im-
portant approximation algorithms for QAPs and graph matching problems.

Chapter 2 begins with a step-by-step derivation of the soft-assign quadratic assign-
ment algorithm. Furthermore, we will discuss special problem cases, followed by the-
oretical properties regarding convergence of the algorithm and parameter choice. In
chapter 3 we shall see the relation of the soft-assign quadratic assignment algorithm to
other deterministic annealing techniques. In chapter 4, several thousand experiments
conducted using this algorithm on various graph matching and quadratic assignment
problems are documented. A further study of the robustness regarding the algorithm
parameters is followed by a discussion of the findings of all experiments. The terminal
chapter will give a summary of the results and observations.

2



Graph Matching and Quadratic Assignment Problems

1.2 Graph Matching and Quadratic Assignment Problems

1.2.1 Problem definition

Before we define the graph matching problem itself, let us first define the graphs to
be matched. For reasons of simplicity, only simple, weighted, undirected graphs are
considered here3. In the following, we assume two graphs to be given, denoted as
G1 = (V1, E1) and G2 = (V2, E2). Furthermore, both graphs are assumed to have an
equal number of vertices |V1| = |V2| = n. The case of graphs with unequal numbers of
vertices will be discussed in section 2.4.1. V1, V2 are indexable sets of vertices or nodes4{

vp;0, . . . , vp;n
}

, p = 1, 2. The edges of the respective graph are denoted as E1 ⊆ V1 ×V1
and E2 ⊆ V2 ×V2. Each graph has an associated weight function, which assigns a positive
real weight5 to every edge (w1 : E1 → R+ and w2 : E2 → R+). We can deduct
corresponding adjacency matrices from the weight functions:

Rn×n 3 Ap :=
(

Ap;ij
)n

i,j=1 , Ap;ij :=

{
wp
(
(vp;i, vp;j)

)
, (vp;i, vp;j) ∈ Ep

0, otherwise
, p = 1, 2

(1.1)
A1 and A2 are symmetric, non-negative matrices, since the graphs are undirected and the
weight function is assumed to be positive. For the special case of unweighted graphs, the
adjacency matrices are confined to the domain of binary matrices.

The matching itself is a bijective mapping between the two sets of vertices V1 and V2.
For integer sets {1, . . . , n} such a bijective mapping is better known as permutation. We
define the set of all permutations as usual:

Πn :=
{

σ : {1, . . . , n} → {1, . . . , n}
∣∣ σ bijective

}
(1.2)

It is convenient for us to conceive the matching as permutation between the indices of
the elements of the sets. In the remainder of this work, the term matching usually refers
to a permutation in this sense.

For a permutation σ we define a permutation matrix P, which permutes the compo-
nents of a vector according to σ:

Rn×n 3 P =
(

Pij
)n

i,j=1 , Pij :=

{
1, σ(i) = j

0, otherwise
(1.3)

We can easily verify this as follows:

(Px)i =
n

∑
j=1

Pijxj = xσ(i), x ∈ Rn (1.4)

Permutation matrices may also be used for permuting rows and columns of a matrix:(
PAPT

)
ij

=
n

∑
k,l=1

Pik Akl Pjl = Aσ(i)σ(j), A ∈ Rn×n (1.5)

3 Attributed relational graphs are common as well, but the definitions and algorithms in this work can be
extended to them in a quite straightforward way. Section A.1 will give a brief summary of these extensions.

4Node and vertex are used as synonyms throughout this work.
5In case of view-based object recognition this weight comprises a similarity measure.

3



INTRODUCTION

This property is of particular importance here, because the adjacency matrices of graphs
can, of course, be permuted using them. Later, we will also use matrices for which only
the columns are permuted. This is achieved by(

APT
)

ij
=

n

∑
k=1

AikPjk = Aiσ(j), A ∈ Rn×n. (1.6)

From the definition of permutation matrices (1.3) and the bijectivity property of
permutations, we observe that permutation matrices are binary matrices with rows and
columns each summing to one6. We use this fact to define the set of all permutation
matrices as

Π̂n :=

{
P ∈ {0, 1}n×n

∣∣∣ ∀j :
n

∑
i=1

Pij = 1, ∀i :
n

∑
j=1

Pij = 1

}
. (1.7)

We can observe that the set of permutation matrices is governed by three different
types of constraints: an integrality constraint, row sum constraints, and column sum
constraints. For the time being, optimizing over the domain of permutations and
optimizing over the domain of permutation matrices is regarded as equivalent, since
they are easily transformed into one another.

Let us return to graph matching. The objective of graph matching is to permute
one of the graphs such that the similarity of the permuted graph and its counterpart is
maximized. The similarity of the graphs is usually expressed by the conformity of their
edges and edge weights, or equivalently by the conformity of their adjacency matrices.
One way to express this formally is to minimize the difference between the two adjacency
matrices, one of which is permuted, measured by some (squared) matrix norm. For
simplicity, we use the Frobenius matrix norm resulting in the following definition of
weighted graph matching:

P∗ = arg min
P∈Π̂n

‖PA1PT − A2‖2
F (1.8)

After we replace the matrix norm and perform some further simplifications, we obtain
the more intuitive objective

σ∗ = arg min
σ∈Πn

n

∑
i,j=1

(
A1;σ(i)σ(j) − A2;ij

)2 . (1.9)

We can transform the objective function (1.8) into a more manageable form:

‖PA1PT − A2‖2
F = tr

{
(PA1PT − A2)(PA1PT − A2)T

}
= tr

{
(PA1PT − A2)(PAT

1 PT − AT
2 )
}

= tr
{

PA1PTPAT
1 PT − PA1PTAT

2 − A2PAT
1 PT + A2 AT

2

}
= tr

{
AT

1 A1 − 2A2PAT
1 PT + A2 AT

2

}
(1.10)

6It is easily verified that this property is not only necessary, but also sufficient.

4



Graph Matching and Quadratic Assignment Problems

Because constant summands and constant positive factors may be ignored when mini-
mizing a function, the equivalence

arg min
P∈Π̂n

‖PA1PT − A2‖2
F = arg min

P∈Π̂n

− tr
{

A2PAT
1 PT

}
(1.11)

immediately follows. The latter optimization problem has the form of a quadratic assign-
ment problem (without linear term). QAPs are of central importance in computer science,
because many hard combinatorial optimization problems belong to this class. In the fol-
lowing section we will discuss quadratic assignment problems, their definition, and their
applications, because the graph matching algorithm analyzed in this work can easily be
generalized to quadratic assignment problems.

A1

A2

a2;ij

j

i
σ(i)

σ(j)

a1;σ(i)σ(j)

Figure 1.2: Correspondence between two matched node pairs and their edges

1.2.2 Quadratic assignment problems

Quadratic assignment problems are defined in various ways throughout literature, often
depending on the specific application. One major difference between the formulations is
the consideration of a linear term in addition to the quadratic term. The quadratic cost
also bears some differences; some variants use two cost matrices, others a single four-
dimensional array. In the following paragraphs we will introduce the QAP in its original
form and also mention some of the most commonly used formulations. This section is
only concerned with quadratic assignment problems between sets of equal size, since
this is the most commonly used type. We will discuss problems with sets of different
cardinality in section 2.4.1.

Quadratic assignment problems were introduced in 1957 by Koopmans and Beck-
man [14], motivated by the following economical problem: A set of n facilities is to be
assigned to a set of n locations with given cost for the distances between the facilities and
with the flow between them, plus additional cost for assigning a facility to a location. The
costs are given by three, real n × n matrices F, D, and B, where Fij is the flow between
facility i and facility j, Dij is the distance between location i and location j, and Bij is the
cost for assigning facility i to location j. The objective is to minimize the overall cost,

5



INTRODUCTION

what we can formally express by

σ∗ = arg min
σ∈Πn

n

∑
i,j,k,l=1

FijDσ(i)σ(j) +
n

∑
i=1

Biσ(i). (1.12)

Lawler [16] introduced a slightly generalized form of the quadratic assignment
problem by replacing the cost matrices F and D by a single, four-dimensional array
C =

(
Cij;kl

)n
i,j,k,l=1. The generalized problem is defined as

σ∗ = arg min
σ∈Πn

n

∑
i,j,k,l=1

Cij;σ(i)σ(j) +
n

∑
i=1

Biσ(i). (1.13)

Other formulations of quadratic assignment problems

Over the time, other formulations for QAPs evolved out of the two objectives above.
One of the reformulations, which we shall study below, is useful for clarifying the
relation between graph matching and quadratic assignment problems. Another will later
be helpful to understand the similarity between the four-dimensional cost array of the
Lawler form and a cost matrix, which allows to determine the eigenvalue spectrum of
the costs.

The first reformulation is based on the original Koopmans-Beckmann form. Using
the identity ∑n

i,j=1 AijBij = ∑n
i,j=1(ABT)ii = tr

{
ABT} and the above mentioned properties

of permutation matrices, we obtain the trace formulation

P∗ = arg min
P∈Π̂n

tr
{

FPDTPT + BPT
}

. (1.14)

By comparing equations (1.14) and (1.11), we observe that graph matching is a special
case of the quadratic assignment problem. Moreover, if the definition of graph matching
would be extended to directed graphs with possible self-loops and possible negative edge
weights, large parts of the QAPs could be conceived as graph matching problems, namely
those without linear costs.

For obtaining the finally considered formulations, we apply some of the properties
of Kronecker products, which are given in section A.2, to the trace formulation:

tr
{

FPDTPT
}

= tr
{

PTFPDT
}

= (vec(P))T vec
(

FPDT
)

= (vec(P))T (D⊗ F) vec(P)
(1.15)

This immediately leads to the Kronecker formulation

P∗ = arg min
P∈Π̂n

(vec(P))T (D⊗ F) vec(P) + (vec(B))T vec(P). (1.16)

We can formulate the generalized form of the QAP by replacing the Kronecker
product with an arbitrary real matrix C:

P∗ = arg min
P∈Π̂n

(vec(P))T C vec(P) + (vec(B))T vec(P) (1.17)

6
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For the time being, we do not strictly distinct between the matrix C and the four-
dimensional cost array

(
Cij;kl

)n
i,j,k,l=1 of the Lawler form. These two forms can be

associated with one another by defining C :=
((

Cij;kl
)n

k,l=1

)n

i,j=1
, which is a matrix of

submatrices.

1.2.3 Other graph matching objectives

Gold and Rangarajan [7] proposed an alternative graph matching objective function,
which directly defines the graph matching problem as quadratic assignment problem.
As we shall see in section 2.4.1, this alternative objective function will be needed for
matching graphs with unequal number of nodes with the soft-assign quadratic assign-
ment algorithm.

We have seen that the traditional graph matching objective can be conceived as
a quadratic assignment problem. In the generalized Lawler form the quadratic cost
amounts to

Cij;kl = −A2;ij A1;kl , (1.18)

assuming that the two graphs have the adjacency matrices A1 and A2. The linear cost
matrix B is set to zero as for all weighted graph matching problems.

Gold and Rangarajan [7] generalized the traditional approach toward an arbitrary
edge weight compatibility function. They defined the quadratic cost as

Cij;kl :=

{
0, A2;ij = 0 ∨ A1;kl = 0

− f (A1;kl , A2;ij), otherwise,
(1.19)

where f (·, ·) is the edge weight compatibility function. Cij:kl is explicitly defined to be 0, if
at least one of the vertex pairs is not connected, because this ensures that the cost matrix
C is sparse, if the graphs are sparse. The sparsity can be exploited in graph matching
algorithms (cf. section 2.2.2). We should note here that the compatibility function f is not
invariant to constant summands, because missing links always have zero cost.

1.2.4 Complexity

Before we discuss the complexity of the aforementioned problems, let us briefly review
their relationship. Intuitively, the unweighted graph matching problem is a special case
of the weighted graph matching problem. Furthermore, we showed that weighted graph
matching problems are special cases of quadratic assignment problems.

A problem that is closely related to unweighted graph matching, is the subgraph-
isomorphism problem. It is asking, whether a graph G1 is a subgraph of another
graph G2. If the optimal matching of these two graphs is known, we can efficiently
(i. e., in polynomial time) verify, whether G1 is a subgraph of G2. Since the subgraph-
isomorphism problem is known to be NP-complete [see 5, p. 960], unweighted as well as
weighted graph matching and QAPs are all NP-hard. Hence, it is unlikely that solutions to
these problems can be efficiently computed in the sense of a polynomial time complexity.
This bears many practical problems, since the computation of an exact solution, even for
modest size problems, requires a huge amount of time. This is a result of the enormous

7
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combinatorial search space of these problems. For instance, if n = 20, there exist more
than 1018 possible assignments. As an example, exactly solving the problem Nug17 from
the QAPLIB library [3] with n = 17 required about 1.5 hours on a current PC (Pentium
III, 700 MHz) using a branch-and-bound implementation distributed with the QAPLIB
data. The QAPLIB is a collection of hard quadratic assignment problems from various
sources, which are commonly used as benchmark experiments.

It has, however, been shown that there are a few special cases, in which QAPs can be
solved in polynomial time (Pardalos et al. [21, p. 6], Burkard et al. [2, sec. 10]). These
articles also point out that QAPs belong to the strongly NP-hard problems, because
finding an ε-approximate7 solution is also NP-hard.

Thus, the probably only way to alleviate the time requirements for the general case
is confining to good, suboptimal solutions. Section 1.4 will discuss some of the various
suboptimal approaches, which have been tried.

1.3 Some Example Quadratic Assignment Problems

In this section we give further examples of quadratic assignment problems, namely the
traveling salesman problem (TSP) and the graph partitioning problem (GPP). Even though
both are not directly related to computer vision applications, they are well studied,
classical problems. We discuss them here in order to point out the breadth of the class
of quadratic assignment problems. Naturally, specialized algorithms for these problems
are superior to all known QAP algorithms, since specialized methods can exploit the
structure of the problem [2, sec. 13.4].

1.3.1 Traveling salesman problem

As the name suggests, this problem is illustrated with a salesman, who has to visit n cities.
The cities are represented as vertices of an undirected, complete graph, whose weights
encode the distances between the cities. The problem is to find the shortest tour, i. e., an
order, in which the salesperson travels through every city without visiting a city more
than once. The traveling salesman problem is known to be NP-hard [see 5, pp. 959f].

As [21, p. 12] points out, the TSP can be formulated as QAP by taking the distance
matrix of the TSP and an adjacency matrix of an arbitrary tour as distance and flow
matrices of a QAP. We can, for example, define the latter cost matrix as

Rn×n 3 F =
(

Fij
)n

i,j=1 , Fij =

{
1, (i + 1 = j) mod n

0, otherwise.
(1.20)

We can verify that this is a valid tour through all cities. By permuting the adjacency
matrix F of the tour, we can obtain any possible sequence of cities and hence any valid
tour. Thus, minimizing the QAP objective

P∗ = arg min
P∈Π̂n

tr
{

FPDTPT
}

(1.21)

finds the shortest tour.
7ε-approximate solutions are characterized by a fixed maximum deviation from the optimum.
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(a) TSP: A tour through
9 cities

(b) Graph bisection problem

Figure 1.3: Some example quadratic assignment problems

1.3.2 Graph partitioning

Graph partitioning is the problem of dividing the set of nodes of an arbitrary graph into
k ≥ 2 equal-sized subsets, while minimizing the flow between the partitions. If k = 2, the
problem is also called graph bisection problem. For every k ≥ 2 this problem is known
to be NP-hard.

The graph bisection problem is mapped onto a QAP by taking the adjacency matrix
of the graph as flow matrix; the distance matrix is a combined adjacency matrix of two
disjoint, complete graphs with n

2 nodes each (Pardalos et al. [21, p. 12], Burkard et al. [2,
sec. 13.4]). We may, for example, define the latter as

Rn×n 3 D :=

(
1 n

2×
n
2

0 n
2×

n
2

0 n
2×

n
2

1 n
2×

n
2

)
.

To match our definition of QAPs, we have to reverse the sign of one of the cost matrices
amounting to the QAP

P∗ = arg min
P∈Π̂n

tr
{

(−F)PDTPT
}

. (1.22)

This maximizes the flow within the partitions of the graph and hence minimizes the flow
between them.

We can also generalize the preceding approach to more than 2 subsets. For that,
the distance matrix is defined as the combined adjacency matrix of k disjoint, complete
graphs with n

k nodes each. The flow matrix is again given by the adjacency matrix of the
graph. The remark regarding the sign reversal applies here as well.
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1.4 Well-known Approximation Algorithms

1.4.1 Discrete optimization methods

Construction methods

Construction methods8 are among the earliest types of approximation algorithms for
QAPs. They employ the step-by-step construction of partial assignments starting with
an empty assignment. At each step, a certain assignment between a not yet considered
facility and a not yet assigned location is added to the partial assignment, until a
permutation is reached. The assignment is selected using a local heuristics, for example
by considering all possible 2-way exchanges of an initial, user-supplied permutation. A
2-way exchange is a reversal of the mapping between two elements in one set and their
assigned counterparts in the other set. The latter heuristics is used by a variant of the
CRAFT algorithm, one of the oldest heuristics for quadratic assignment problems.

Improvement methods

Improvement methods9 start with a feasible solution and try to improve it afterward.
The improvement is achieved by local search algorithms, which are usually governed by
the type of neighborhood considered and by the order of neighborhood traversal. For
example, one might consider all 2-way or cyclic 3-way exchanges in a random order.

A widely used local search algorithm is tabu search. The tabu search tries to circum-
vent poor local minima by considering only a part of the neighborhood, in particular
only neighbors that are not on the current tabu list. The tabu list is iteratively updated,
whereby new tabu rules are added and others are removed. Various types of tabu search
algorithms have been employed for solving QAPs approximately [cf. 2, sec. 8.4]. Certain
types showed the highest performance for some of the problems in the QAPLIB.

Simulated annealing

Simulated annealing methods10 are basically an extension of improvement methods.
They are able to overcome certain local minima by occasionally allowing deteriorating
changes. They belong to the group of Monte-Carlo algorithms. The probability for these
deteriorating changes is gradually lowered according to an annealing schedule. The term
“annealing” roots in a similarity to models of thermal annealing processes in statistical
mechanics. Simulated annealing methods have, under mild conditions, been shown to
converge toward the global optimum. Theoretical results regarding the convergence
speed, however, are lacking until today [2, sec. 8.5]. In practice, these methods tend
to be slow, but turned out to be most competitive for certain QAPLIB problems.

8Pardalos et al. [21, p. 23], Burkard et al. [2, sec. 8.1]
9Pardalos et al. [21, pp. 24f], Burkard et al. [2, sec. 8.3f]

10Pardalos et al. [21, p. 25f], Burkard et al. [2, sec. 8.5]
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1.4.2 Continuous optimization methods

Relaxations

Relaxation based methods, an important class of techniques for QAPs, have in common
that they drop binary constraints forming a continuous optimization problem, which
may, e. g., be linear or convex quadratic [21, pp. 4f]. The purpose of these relaxations is
to obtain a problem, whose global optimization is tractable in practice. After finding the
global optimum of the relaxed problem, the obtained solution has to be transformed back
to the domain of permutation matrices.

Furthermore, these techniques have the advantage that they can not only be used to
find approximate solutions, but also to create branch-and-bound algorithms for com-
puting the exact solution [2, sec. 6]. This bases on the fact that relaxations deliver a
lower bound to the minimum of the original problem. The lower bound can be used
to cut branches off the combinatorial search tree that do not lead to the global optimum.
Nevertheless, such search algorithms naturally have exponential worst-case time require-
ments.

Deterministic annealing

The last class of algorithms, which we will introduce here, are algorithms using the
deterministic annealing technique. Like the simulated annealing methods discussed
above, these algorithms use an annealing schedule in analogy to physical annealing
processes. In contrast to simulated annealing, deterministic annealing uses, as the
name suggests, deterministic subroutines at every computational temperature on the
schedule.

Prominent algorithms of this class use the annealing parameter to control the “de-
gree of convexity” of a modified objective function. Usually, a convex term, which is
weighted with the annealing parameter, is added to the objective function on the con-
tinuous domain. At high computational temperatures the overall objective function is
convex and hence easy to minimize. By gradually lowering the temperature, local min-
ima appear, which at the end of the annealing process nearly correspond to the local
minima of the original objective function. At each temperature, a local search heuristics
in the continuous domain, which is initialized with the result from the previous tempe-
rature step, approaches the closest local minimum. The intuition is to track down a good
local minimum, which is hopefully not too far away from the global minimum. In con-
trast to simulated annealing approaches it is still an open question, whether deterministic
annealing approaches can be set up to converge globally.

Deterministic annealing algorithms usually differ regarding the local optimization
method. In the following chapters we will discuss a recently developed deterministic
annealing approach, which has been independently proposed by Rangarajan et al. [e.g.
24], and Ishii and Sato [11, 12]. The local search algorithm uses the so called soft-assign
technique, which we will introduce as well.
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2.1 Derivation of the Algorithm

2.1.1 History and introduction

This section provides a step-by-step derivation of the soft-assign quadratic assignment
algorithm1 for approximately solving quadratic assignment problems, which we will
analyze both theoretically and experimentally in the following parts of this work. The
early roots of this algorithm can be found in a 1994 paper by Gold et al. [6], as pointed out
by [10]. Rangarajan et al. [24] provided the first step-by-step derivation of the algorithm;
[7] mentioned the term soft-assign for the central technique for the first time. A very
similar algorithm was independently proposed by Ishii and Sato in 1996, published as
a technical report. A revised version of this report was published in 2001 [12]. Ishii
and Sato termed their algorithm Doubly Constrained Network (DCN) according to its way

1To prevent possible naming confusions, it should be noted here that the terms graduated assignment algo-
rithm, soft-assign QAP algorithm, and soft-assign quadratic assignment algorithm are used as synonyms
throughout this work.
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of constraint satisfaction. In [10], they noted the similarity between their method and
the one from Rangarajan et al. and chose to adopt the term soft-assign, because the
corresponding techniques were proposed earlier. We will mainly use the term soft-assign
for the same reasons.

The soft-assign QAP algorithm belongs to the class of deterministic annealing algo-
rithms, which we briefly introduced in section 1.4.2, and therein to the category of con-
tinuous state, discrete-time schemes. In the first part of the following derivation we will
introduce a deterministic annealing framework for the QAP objective function. The sub-
sequent parts explain the local search that is performed at each computational tempe-
rature. Although the particular search algorithm is usually motivated by artificial neural
network approaches, we omit the relation to neural network algorithms for now and clarify
it in chapter 3.

Rangarajan et al. originally derived the algorithm using an unweighted graph
matching objective function. We will instead use the more general quadratic assignment
objective function in the generalized form by Lawler (cf. equation (1.13)).

Before we begin the derivation, let us restate the optimization problem here. We
formulate the problem as minimization of the objective function E(S) on the domain of
binary matrices. This function directly emerges out of the quadratic assignment problem
to be solved2:

min
S∈{0,1}n×n

1
2 ∑

i,j,k,l
Cij;klSikSjl + ∑

i,j
BijSij︸ ︷︷ ︸

=:E(S)

(2.1a)

subject to ∑
i

Sij = 1, ∀j (2.1b)

∑
j

Sij = 1, ∀i (2.1c)

This formulation basically differs from Lawler’s form by the explicit row and column
sum constraints and a factor of 1

2 for the quadratic term. This factor simplifies some of
the following equations and can be ignored, as long as there is no linear cost. For the time
being, we assume C to be symmetric, i. e., ∀i, j, k, l : Cij;kl = Cji;lk.

2.1.2 Deterministic annealing and barrier function

In this step we integrate the discrete QAP objective function (2.1a) in a continuous state
deterministic annealing framework. For that, we consider the objective function not only on
the domain of binary matrices, but on the domain of positive matrices. As mentioned
earlier, deterministic annealing techniques for approximating QAPs are usually based
on adding a convex function, which is controlled by the annealing parameter, to the
objective function in the continuous domain. Because the QAP objective function itself is
usually non-convex, such methods are sometimes referred to as graduated non-convexity
methods. The convex function is also called barrier function, because of the similarity to
barrier function methods in nonlinear programming (see below).

2If not denoted otherwise, summations and universal quantifier in this chapter imply the range {1, . . . , n}.
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When the combinatorial constraint of (2.1) is relaxed into a positivity constraint, we
obtain the following continuous problem:

min
M∈Rn×n

1
2 ∑

i,j,k,l
Cij;kl Mik Mjl + ∑

i,j
Bij Mij (2.2a)

subject to ∑
i

Mij = 1, ∀j (2.2b)

∑
j

Mij = 1, ∀i (2.2c)

Mij ≥ 0, ∀i, j (2.2d)

Such positive matrices, for which each row and each column sums to one, are called
doubly stochastic.

A nonlinear programming problem of minimizing Φ(x) under the constraints Ax = b
and gi(x) ≥ 0 can be handled using a barrier function approach (see, e. g., Murthy [20,
pp. 469f]). Such a technique enforces the inequality constraints gi(x) ≥ 0, which specify
a subdomain, using a barrier function in an iterative algorithm.

The r-th iteration step of the barrier function method consists of solving the modified
minimization problem Φ(x)− α(r) ∑i log gi(x) under the constraint Ax = b; let us call the
result x(r). The algorithm for solving the modified problem is commonly based on some
directional descent, which starts at x(r−1), the result of the previous iteration. Variables
that approach 0 during the minimization are pushed back toward higher values by the
strongly increasing gradient of the barrier function (The gradient tends to ∞, when x
approaches 0). We should note here that the modified problem is, as we intended, no
longer explicitly restricted by the inequality constraints. When the iterative process is
initialized with a feasible solution x(0) and carried out with a monotonically decreasing
barrier parameter α(r) it converges, under mild assumptions, to the solution of the
original problem.

Let us apply this technique formally to the above objective function (2.2a), albeit
it is not used to solve the problem exactly: The sum constraints are assumed to be
expressed as a linear equation and the function g is set to identity. For the deterministic
annealing framework, we replace the barrier function log x by a negative entropy
function −H(x) = −x log x . The negative entropy function, as opposed to the traditional
logarithmic barrier function is used here, because it will allow us to show certain
properties regarding the convergence in section 2.5.2. Rangarajan et al. [26] reported
that similar results would be hard, if not impossible, to obtain for other barrier functions
including the logarithmic one. As for the logarithmic function, the gradient of the
negative entropy function tends toward infinity when its argument approaches 0. Strictly
speaking, the negative entropy function is not a barrier function, because it does not tend
to infinity when the argument approaches 0 [cf. 18]. Nevertheless, it can be used in the
same way as the pure logarithmic barrier function. Furthermore, we observe that the
entropy function is convex on R+ by considering

d
dx

H(x) = log x + 1 (2.3)
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and

d2

dx2 H(x) =
1
x
> 0, ∀x > 0. (2.4)

Thus, the entropy function H(x) = x log x , weighted with the annealing parameter
1
β , which corresponds to the barrier parameter, can be used to build a deterministic an-

nealing framework. To control all the state variables, we add the term 1
β ∑ij Mij log(Mij)

to the continuous objective function (2.2a). After removing the now redundant positivi-
ty constraint (2.2d), we obtain the desired deterministic annealing framework, in which
an annealing parameter β is used to control the convexity of the compound objective
function. Low values make the function nearly convex and therefore easier to minimize,
whereas high values of β make the problem more similar to the original (QAP) problem.
Furthermore, the barrier function ensures the positivity of every continuous state vari-
able Mij. Because of the sum constraint satisfaction, this term also puts an upper bound
on the Mij, since a value greater than 1 would require another value to be negative, what
is not allowed.

2.1.3 Self-amplification

Experimentally, several publications [e. g., 12, 22, 26] reported two-cycle oscillations for
certain instances, which can be removed with a self-amplification term. This term is added
to the continuous objective function. It influences the continuous objective function such
that the global minimum (or the global minima) is identical to the one of the combinatorial
QAP objective function3. We will furthermore need this term to show some convergence
related properties of the local search algorithm (cf. section 2.5).

The self-amplification term −γ
2 ∑i,j M2

ij, which we use here, has the property that is
does not modify the minimum the combinatorial objective function, because the term
is constant for permutation matrices and could thus be omitted. Nevertheless, when
doubly stochastic matrices are considered, the term is no longer a constant and can
therefore modify the dynamics of the algorithm. To simplify the remaining part of the
derivation, we introduce the self-amplification term by defining a new compound cost
matrix or array

C(γ) =
(

C(γ)
ij;kl

)n

i,j,k,l=1
, C(γ)

ij;kl :=

{
Cij;kl , i 6= j ∨ k 6= l

Cii;kk − γ, otherwise.
(2.5)

For now, it is sufficient for us to know that γ is set up such that C(γ) is negative
definite, which makes the quadratic term concave. Therefore, the compound objective
is no relaxation of the QAP objective for which computing the optimum is tractable. In
section 2.3.1 we will explain this setup and its relation to the above mentioned goals.

3This only holds for the limit of β approaching ∞.
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2.1.4 Algebraic transformation

To carry out the deterministic annealing algorithm, we have to approach the closest local
minimum of the continuous objective function at every temperature on the annealing
schedule. This is done using a local search algorithm based on a discrete-time update
scheme, which we will derive in this and the following sections.

Using the two aforementioned techniques, we can formulate a new, continuous
problem, which is to be minimized at each temperature on the still to be defined
annealing schedule4:

min
M∈(0:1)n×n

1
2 ∑

i,j,k,l
C(γ)

ij;kl Mik Mjl + ∑
i,j

Bij Mij +
1
β ∑

i,j
Mij log(Mij)︸ ︷︷ ︸

=:F(M)

(2.6a)

subject to ∑
i

Mij = 1, ∀j (2.6b)

∑
j

Mij = 1, ∀i. (2.6c)

Our first step in handling the preceding minimization problem is a transformation of
the objective function F(M), in which the quadratic term is split up. According to
Mjolsness and Garrett [19], the minimization of an objective function f (x) = 1

2 x2 under
some constraints is equivalent to the simultaneous minimization of the objective function
f̂ (x, σ) = xσ − 1

2 σ2 under the same constraints. This results out of the fact that the
fixed points regarding x are preserved. After applying the algebraic transformation to each
relevant summand of the above objective function, we obtain

F(M, X) = ∑
i,j,k,l

C(γ)
ij;kl MikXjl −

1
2 ∑

i,j,k,l
C(γ)

ij;klXikXjl + ∑
i,j

Bij Mij +
1
β ∑

i,j
Mij log(Mij). (2.7)

The resulting function is clearly linear in M (when disregarding the barrier function),
but quadratic in X. For the graduated assignment algorithm we use these properties to
built an iteration scheme, which performs alternate minimizations instead of simulta-
neous minimizations. For now, we disregard the sum constraints and just consider the
stationary conditions of equation (2.7):

∂

∂Xjl
F(M, X) = ∑

i,k
C(γ)

ij;kl Mik −∑
i,k

C(γ)
ij;klXik = 0, ∀j, l (2.8a)

∂

∂Mik
F(M, X) = ∑

j,l
C(γ)

ij;klXjl + Bik +
1
β

(log(Mik) + 1)= 0, ∀i, k (2.8b)

Since C(γ) is negative definite, minimizing F(M, X) with respect to X, while keeping the
other arguments fixed, uniquely yields X = M. Minimizing with respect to M, while the
keeping the other variables fixed, yields

Mik = exp

[
−β

(
∑
j,l

C(γ)
ij;klXjl + Bik

)
− 1

]
, ∀i, k. (2.9)

4We may restrict the search space to the interval (0 : 1)n×n, because it is assumed that the local search starts
at a feasible point inside this domain, which will furthermore not be left during the minimization.
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The idea, which later yields the discrete-time update scheme, is that these separate
minimizations can be performed in an alternating way. The intuition is that each of the
separate minimization steps lowers the objective function value. Above, however, we
ignored the satisfaction of the row and column sum constraints. Thus, a technique for
constraint satisfaction has to be added before we set up the iterative update scheme.

2.1.5 Hard constraint satisfaction

In contrary to previous deterministic annealing approaches, e. g., from Peterson and
Söderberg [22], the soft-assign QAP algorithm strives to encode the row and column
sum constraints directly into the minimization algorithm, as opposed to modifying the
objective function. Previous deterministic annealing approaches used “soft” constraint
satisfaction methods that use a penalty term in the objective function. Such a penalty
term allows undesirable configurations that do not satisfy the constraints, but penalizes
them. In other words, soft constraint satisfaction induces a configuration space that
is larger than the solution space and thus contains redundant configurations, whereas
for hard constraint satisfaction the configuration space is equal to the solution space. The
latter approach is strongly favorable, since the redundancy of soft constraint satisfaction
approaches has been shown to induce adverse scaling properties; i. e., the solution quality
generally becomes worse, when the size of the problem increases. [22] reported that the
negative effect increases for hard, random problems and is less severe for easy, structured
problems.

To integrate the constraint satisfaction in the minimization process, let us introduce
Lagrange multipliers to enforce the row and column sum constraints. Later we shall see
that these constraints can be satisfied in an elegant way. We obtain the corresponding
Lagrange function

L(M, X , µ, ν) = F(M, X) + ∑
i

µi

(
∑

j
Mij − 1

)
+ ∑

j
νj

(
∑

i
Mij − 1

)
, (2.10)

where the µi and the νj are the Lagrange multipliers. The introduction of Lagrange
multipliers for this specific problem was already proposed by Yuille and Kosowsky
[32] in the context of continuous time frameworks. They suggested a gradient descent
on the objective function combined with a projection of the gradient onto the space
obeying the constraints. Rangarajan et al. [24] reported this procedure to be problematic
regarding implementations on digital computers and to be algorithmically inefficient.
Here, a different path is followed, for which we first consider the stationary conditions
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of L(M, X , µ, ν):

∂

∂Xjl
L(M, X , µ, ν) = ∑

i,k
C(γ)

ij;kl Mik −∑
i,k

C(γ)
ij;klXik = 0, ∀j, l (2.11a)

∂

∂Mik
L(M, X , µ, ν) = ∑

j,l
C(γ)

ij;klXjl + Bik + µi + νk +
1
β

(log(Mik) + 1)= 0, ∀i, k (2.11b)

∂

∂µi
L(M, X , µ, ν) = ∑

j
Mij − 1 = 0, ∀i (2.11c)

∂

∂νj
L(M, X , µ, ν) = ∑

i
Mij − 1 = 0, ∀j. (2.11d)

Equation (2.11b) is then reformulated as

Mik = exp

[
−β

(
∑
j,l

C(γ)
ij;klXjl + Bik + µi + νk

)
− 1

]
, ∀i, k, (2.12)

which will be the basis for the discrete-time algorithm. We again rewrite the equation as

Mik = exp(−βµi)︸ ︷︷ ︸
=:ui

exp(−βνk)︸ ︷︷ ︸
=:vk

exp

[
−β

(
∑
j,l

C(γ)
ij;klXjl + Bik

)
− 1

]
︸ ︷︷ ︸

=:Wik

, ∀i, k. (2.13)

We observe from this equation that the ui essentially scale the i-th row of W and vk the
k-th column of this matrix. If the stationary conditions (2.11c) and (2.11d) are required
to hold as well, the Lagrange parameters hence scale the strictly positive matrix W (due
to the exponential function) to the doubly stochastic matrix M. We can now rewrite
equation (2.13) in vectorial form giving

M = diag{u}W diag{v}. (2.14)

As pointed out, e. g., in [7, 24], a theorem by Sinkhorn [28] provides a convenient
way of obtaining these scale factors:

Theorem 2.1 (Sinkhorn)
To a given strictly positive n× n matrix A there corresponds exactly one doubly stochastic matrix
T A, which can be expressed in the form T A = D1 AD2, where D1 and D2 are diagonal matrices
with positive diagonals. The matrices D1 and D2 are themselves unique up to a scalar factor.

Proof. See [28].

Theorem 2.2 (Sinkhorn)
The iterative process of alternately normalizing the rows and columns of a strictly positive n× n
matrix is convergent to a strictly positive doubly stochastic matrix.

Proof. See [28].
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From the vectorial form in equation (2.14), it is easy for us to observe that the so
called Sinkhorn balancing from theorem 2.2 is able to provide the unique doubly stochas-
tic matrix M. Thus the Sinkhorn balancing procedure solves for the Lagrange parameter
vectors µ and ν without explicitly providing them. Considering that alternate normal-
izations can be easily carried out, they are well suited for minimization of the objective
under the sum constraints. If other barrier functions are to be used in conjunction with
the Sinkhorn balancing, it has to be verified, whether the positivity requirement of the
balancing procedure still holds for the particular barrier function.

The soft-assign technique subsumes the Sinkhorn scaling operations in conjunction
with the computational temperature and the exponential function. We assume Z to be a
cost matrix induced by some still to be specified problem:

M(0)
ik := exp(βZik), ∀i, k (2.15a)

M(2s−1)
ik :=

M(2s−2)
ik

∑j M(2s−2)
ij

, ∀i, k; s ≥ 1 (2.15b)

M(2s)
ik :=

M(2s−1)
ik

∑j M(2s−1)
jk

, ∀i, k; s ≥ 1 (2.15c)

The preceding technique enforces two types of sum constraints, namely that each row
and each column sums to one. If the above cost matrix Z is the cost matrix of a linear
assignment problem, the soft-assign technique can be used to solve linear assignment
problems when it is combined with deterministic annealing. This was first reported by
Kosowsky and Yuille [15]. Because of this property, Gold and Rangarajan [8] termed
the method soft-assign. A similar technique, which only enforces one sum constraint, is
the soft-max [see 8], which can, for example, be used to find the maximum of a discrete
set.

2.1.6 Discrete-time synchronous update scheme

After the method of constraint satisfaction was introduced, we finally assemble an
iteration scheme and with that our local search heuristics. Starting from the algebraic
transformation and adding row and column sum constraint satisfaction, we derived a set
of simultaneous equations (2.11a) - (2.11d), which will be the basis for the discrete-time
synchronous update scheme below.

As already mentioned in section 2.1.4, we can define a discrete-time update scheme
by minimizing the objective regarding the different variables separately in an alternating
way. For that, a superscript is first added to each argument of the Lagrange function,
which indicates the current discrete time step. Second, we minimize L

(
M(r−1), X(r−1)

)
with respect to X(r−1), while keeping the other arguments fixed. According to the results
of section 2.1.4, the stationary condition (2.11a) leads us to the update step

X(r) := M(r−1), ∀r ≥ 1. (2.16)

The next update step minimizes L
(

M(r−1), X(r)
)

with respect to M(r−1) under exact sum
constraint satisfaction, while keeping the other variables fixed. As we have shown in
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the previous section, the remaining stationary conditions (2.11b) - (2.11d) can be fulfilled
simultaneously by using the soft-assign method. With equation (2.12) we define the
second update step as

M(r)
ik := exp

[
−β

(
∑
j,l

C(γ)
ij;klX

(r)
jl + Bik + µ

(r)
i + ν

(r)
k

)
− 1

]
, ∀i, k; r ≥ 1, (2.17)

where it is assumed that µ(r) and ν(r) are set up using Sinkhorn’s algorithm such that
M(r) has the property of rows and columns summing to one. This iteration scheme
falls into the class of synchronous update schemes, since the state variables are updated
synchronously using only values from the previous iteration step, as opposed to serial
update schemes, where only one state variable is updated at a time using partly previous
and partly current state variables.

Before finally describing the algorithm, we should note another important interpre-
tation of the preceding derivation. Gold and Rangarajan [7] alternatively described the
scheme by considering a Taylor series expansion of the continuous, but otherwise un-
modified objective function at time step r using the (r − 1)-th time step as initial con-
dition. By omitting the linear term, we receive the following first order approximation:

1
2 ∑

i,j,k,l
C(γ)

ij;kl M
(r)
ik M(r)

jl ≈
1
2 ∑

i,j,k,l
C(γ)

ij;kl M
(r−1)
ik M(r−1)

jl

+ ∑
i,k

[(
∑
j,l

C(γ)
ij;kl M

(r−1)
jl

)
·
(

M(r)
ik −M(r−1)

ik

)] (2.18)

Minimizing the right-hand side of (2.18) regarding M(r) is equivalent to solving a linear
assignment problem (we again add the previously omitted linear cost):

min
M(r)∈{0,1}n×n

∑
i,k

[
∑
j,l

C(γ)
ij;kl M

(r−1)
jl + Bik

]
︸ ︷︷ ︸

=:−Z(r)
ik

M(r)
ik , ∀r ≥ 1 (2.19a)

subject to ∑
i

M(r)
ij = 1, ∀j; r ≥ 1 (2.19b)

∑
j

M(r)
ij = 1, ∀i; r ≥ 1 (2.19c)

In summary, the Taylor series approximation yields a local, linear relaxation of the
quadratic assignment problem, which can be solved using the soft-assign technique.
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2.2 The Algorithm

2.2.1 Introduction

Before the whole algorithm is described, we have to add a few, but nevertheless impor-
tant details.

When we derived the deterministic annealing framework, we already mentioned
that the descent has to start at an admissible configuration (i. e., a doubly stochastic
matrix) in the interior of the admissible subdomain. We should first note that any scaling
factor that is applied to every element of the initial assignment matrix is removed after
the first row normalization. Thus, the absolute scaling is irrelevant. As we shall see
in section 2.3.2, the objective has a single trivial fixed point at 1

n for sufficiently high
temperatures, to which the update scheme probably converges. Hence, initially setting
every element to 1

n immediately brings the system into its equilibrium. If the initial
temperature, in contrary, is not high enough, it is favorable to add symmetric noise to the
values (for example from a Gaussian distribution), to prevent the system from converging
to the trivial local minimum. Because adding noise in the former case does not prevent
convergence, there is no drawback in always doing so.

Furthermore, we have to define an annealing schedule for the inverse temperature
parameter β. We assume an initial inverse temperature β0 to be given, which will be
determined later. At each temperature step, the minimization of the modified objective
function is performed with the discrete-time update scheme described in the previous
section. After approximate convergence (if the scheme converges), we rise the inverse
temperature through multiplication by a constant factor βr, the annealing rate. The
annealing process ends at a given inverse temperature β f .

Following the above observation that any common scaling factor of the assignment
matrix is removed after the first row normalization, the Lagrange parameter vectors may
initially be set to zero and the subtraction of 1 in update step (2.17) may be omitted as
well.

For the practical implementation, we have to establish convergence criteria for the
discrete-time update scheme. This is achieved by stopping the scheme, when the change
of the assignment matrix is sufficiently low. Here, we test the change, measured by
the Frobenius matrix norm, against a given threshold δ. Moreover, we also impose a
strict bound on the number of iterations (r f ), which prevents infinite loops in the case of
divergence (e. g., because of adverse parameter settings).

Finally, let us define convergence bounds for the Sinkhorn balancing procedure. The
alternate normalizations are performed until the maximum deviation of the row sums
from 1 does not exceed a given threshold ε. Again, we limit the number of iterations by
a constant (s f ).
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2.2.2 The soft-assign quadratic assignment algorithm

Combining all previous techniques and components leads us to the soft-assign quadratic
assignment algorithm 2.1. Table 2.1, which is given below, summarizes the symbols used
for describing the algorithm.

Algorithm 2.1 Soft-Assign Quadratic Assignment Algorithm
β ← β0

M(0)
ik ←

1
n · N (1, 0.1), ∀i, k

while β ≤ β f do {Deterministic annealing}
r ← 0

5: repeat
r ← r + 1
Z(r)

ik ← −
[
∑j,l C(γ)

ij;kl M
(r−1)
jl + Bik

]
, ∀i, k {Linear relaxation}

M(r,0)
ik ← exp

(
βZ(r)

ik

)
, ∀i, k {Soft-assign}

s ← 0
10: repeat {Sinkhorn balancing}

s ← s + 1

M(r,2s−1)
ik ← M(r,2s−2)

ik

∑j M(r,2s−2)
ij

, ∀i, k {Row normalization}

M(r,2s)
ik ← M(r,2s−1)

ik

∑j M(r,2s−1)
jk

, ∀i, k {Column normalization}

until maxi|∑k M(r,2s)
ik − 1| < ε ∨ s > s f

15: M(r)
ik ← M(r,2s)

ik , ∀i, k

until ‖M(r)−M(r−1)‖F
N < δ ∨ r > r f

M(0)
ik ← M(r)

ik , ∀i, k
β ← ββr

end while
20: Clean-up heuristics

A running time analysis of algorithm 2.1 reveals that it is polynomially bounded:
The number of iterations of the loops beginning in lines 3, 5, and 10 are all bounded by
constants. Thus only the matrix calculations contribute to the order of computational
complexity. They all have O

(
n2) worst-case complexity, except line 7, which has O

(
n4)

worst-case complexity. We can further improve this bound by exploiting the sparse
structure of the quadratic cost matrix C. A careful implementation will be able to bound
the running time by O (max{n, |V1|} ·max{n, |V2|}).
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Symbol Meaning

C(γ) quadratic cost matrix including self-amplification term

B linear cost matrix

Z(r) effective cost matrix at relaxation step r

M(r,2s) assignment matrix at relaxation step r and Sinkhorn balancing step s

β current inverse temperature

β0 initial inverse temperature

βr annealing rate

β f final inverse temperature

r f maximum number of relaxation steps at each temperature step

s f maximum number of Sinkhorn balancing steps at each relaxation step

δ approximate convergence threshold for relaxation

ε approximate convergence threshold for Sinkhorn balancing

Table 2.1: Variables and constants of the soft-assign quadratic assignment algorithm

2.2.3 Clean-up heuristics

In anticipation of section 2.5, let us note here that the annealing algorithm, under certain
assumptions, probably converges arbitrarily close to a permutation matrix. But a rough
annealing schedule, the hard iteration bounds, and numerical inaccuracies may prevent
the algorithm from returning a permutation matrix. Instead, a nearly doubly stochastic
matrix is returned, which has to be transformed into a permutation matrix. Gold and
Rangarajan [7] proposed to binarize the matrix entries by setting the largest value in each
row to 1, the rest to 0. This method yields a permutation matrix, if the maxima occur
in different columns, or in other words if the doubly stochastic matrix is row dominant.
But there are certain situations, where this is not the case. Experimentally, symmetries
in the cost matrix were observed to cause the obtained doubly stochastic matrix to have
multiple largest entries in each row, which moreover appear in several rows. We can,
for example, circumvent this problem by iteratively choosing one of the multiple largest
entries in a not yet occupied column. Alternatively, a linear assignment problem can be
put up, which finds the closest permutation matrix [7].

Ishii and Sato [12] proposed to use a 2opt heuristics to perform a local optimization
of the obtained permutation matrix. This greedy algorithm is especially known for
approximately solving traveling salesman problems [4, pp. 246f] and is also mentioned
in the context of quadratic assignment problems by Burkard et al. [2, pp. 9f]. The 2opt
method belongs to the class of improvement methods, which perform a search on the
local neighborhood of feasible solutions. For this particular method, the pair-exchange
neighborhood is considered, i. e., the configurations that are reached by exchanging pairs
of assignments. The permutation is traversed (possibly multiple times) in a predefined
order, whereby the first encountered pair, whose exchange improves the QAP objective
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function, is actually exchanged. This is done until no further improvement is possible.
We should note here, that this algorithm has been shown to have exponential worst-case
running time [2, p. 10], but performs quite well in nearly all practical cases. Sections 4.2.1,
4.2.2, and 4.3 give experimental results on the improvement obtained by applying the
2opt greedy strategy.

2.3 Theoretically Motivated Parameter Choice

The dynamics of the soft-assign quadratic assignment algorithm is influenced by several
algorithm parameters, but only two of them were successfully studied theoretically.
At first, this section discusses the influence of the self-amplification parameter γ as
introduced in section 2.1.3. Later, the influence of the initial inverse temperature on the
dynamics is studied.

2.3.1 Self-amplification parameter

We established the self-amplification term, controlled by a parameter γ, to improve the
solution quality. Let us now study the effectiveness of this term. Yuille and Kosowsky
[32] introduced it to ensure that the global minimum of the continuous objective function
corresponds to the global minimum of the combinatorial QAP optimization problem5.
They derived a general criterion for the self-amplification parameter, for which they
use the following figurative imagination: The admissible domain of doubly stochastic
matrices can be seen as part of the interior of a n2-dimensional unit hypercube {0, 1}n2

.
The vertices of this hypercube correspond to the domain of binary matrices; parts of these
vertices form the domain of permutation matrices. Yuille and Kosowsky in other words
wanted to guarantee that the minimum of the continuous objective function lies at one of
the admissible vertices of this hypercube, as it does for the combinatorial objective. This
is achieved by shifting the eigenvalues of C toward the negative, such that the interior of
the hypercube has at least one negative eigenvalue. Moreover, minima on the faces of the
hypercube also have to be prevented. They finally give the following theorem:

Theorem 2.3 (Yuille and Kosowsky)
Let the objective function be of the form E(M) = ∑i,j,k,l Cij;kl Mik Mjl . Then one can ensure that
the minima lie at the vertices of the hypercube by adding a term −γ ∑i,k M2

ik where γ > ‖C‖F.

Proof. See Yuille and Kosowsky [32].

Setting up γ according to this criterion implies that C(γ) is negative definite, since
‖C‖F is an upper bound on the absolute value of the eigenvalues of C. Although this
guarantees that the global minimum of the continuous objective function is identical
to the one of the discrete objective function, we shall see that the convergence related
properties in section 2.5 have less restrictive requirements. For these convergence studies,
the negative definiteness of C(γ) may be restricted to the subspace of matrices with
columns summing to zero. In anticipation of this, let us derive a criterion that is suitable

5If the global minimum is not unique, the statements still apply analogously.
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in practice. We will use the following lemma informally proposed by Rangarajan et al.
[25]:

Lemma 2.4
Let the matrix Tn be defined as Tn := In − 1

n 1n×n. For an arbitrary, real matrix M the
transformed matrix M̂ := Tn M has annihilated column sums.

Proof. See section A.3.

We should recall that C(γ) is strictly negative definite on the subspace of matrices
with annihilated column sums, if and only if

vec(M)TC(γ) vec(M) < 0, ∀M ∈ Rn×n, ∀j : ∑
i

Mij = 0. (2.20)

Using the property from lemma 2.4 and subsequently the Kronecker product properties
from section A.2, we can rewrite this as

vec(Tn MIn)TC(γ) vec(Tn MIn) =

vec(M)T(In ⊗ Tn)C(γ)(In ⊗ Tn) vec(M) < 0, ∀M ∈ Rn×n.
(2.21)

What follows is a convenient criterion for negative definiteness on the above subspace:
C(γ) is strictly negative definite on the subspace of matrices with columns summing to
zero, if and only if

λmax

(
(In ⊗ Tn)C(γ)(In ⊗ Tn)

)
< 0. (2.22)

If γ is chosen such that the inequality (2.22) holds, this allows us to show certain
properties regarding the convergence, which imply that the self-amplification term re-
moves the stability problems. In practice, however, the self-amplification parameter may
be chosen empirically, as it is done for most of the experiments documented in chap-
ter 4, because we shall see that a proper choice is crucial to optimal performance (cf.
section 4.2.3).

2.3.2 Critical inverse temperature

Second, we examine the initial inverse temperature of the annealing schedule and its
influence on the dynamics of the algorithm. When the computational temperature
parameter T = 1

β is high, the convex barrier function causes the modified objective
function to be nearly convex. If we only minimize the barrier function under row and
column sum constraints, we obtain that the trivial fixed point Mij = 1

n , ∀i, j is the
unique global minimum (cf. section A.4). If the algorithm converges to a local minimum,
it also converges into a unique global minimum. Hence, we would like to start the
annealing at a sufficiently high temperature, where the algorithm still converges to a
unique global minimum. This guarantees that the algorithm does not “miss” important
bifurcations, which emerge at lower temperatures through the multiple local minima of
the QAP objective. In the following, we will estimate the inverse critical temperature
βc, at which the first bifurcation occurs. Ishii and Sato [12], Peterson and Söderberg

26



Handling Special Cases with the Algorithm

[22], Yuille and Kosowsky [32] gave similar conclusions. Let us first consider the Hessian
of the continuous objective function, whereby the Lagrange terms are disregarded:

∂2

∂Mik∂Mjl
E(M) = Cij;kl +

(
−γ +

1
βMik

)
δijδkl , ∀i, j, k, l (2.23)

The trivial fixed point Mik = 1
n is now used to determine the critical temperature,

although the fixed point might be slightly deviating, because of the increasing influence
of the actual QAP objective. By requiring the Hessian to be positive definite for this
particular M, we estimate the critical temperature as

Tc =
1
βc

> max
{

0,
1
n

(−λmin(C) + γ)
}

= max
{

0,− 1
n

λmin

(
C(γ)

)}
. (2.24)

Altogether, this gives us a feasible criterion for ensuring that the initial temperature
exceeds the critical temperature.

Bifurcations

Ishii and Sato analyzed the problem related, as well as the algorithm related bifurcation
structure. For generic quadratic assignment problems, symmetries and corresponding
bifurcations do not generally exist [11]. Problem specific analyses can only be made
for certain subclasses of the QAP, e. g., for TSP problems, for which [27] gives an in-
depth review. Regarding algorithm related bifurcations, Ishii and Sato [12] reported a
significantly improved experimental behavior compared to other deterministic annealing
approaches with soft constraint satisfaction.

2.4 Handling Special Cases with the Algorithm

2.4.1 Imbalanced problems

In some cases it is desirable to compute an assignment between two sets with different
cardinality, which we refer to as rectangular or imbalanced problems. For that, the ob-
jective is to assign the smaller set to an equal-sized subset of the larger set. This requires
not only finding the best assignment to a specific subset, but also finding the subset that
yields the best overall assignment. Especially graph matching problems posed by view-
based object recognition problems may lead to such asymmetric situations, since, for
example, occlusion may prevent the detection of some of the features used and hence
results in unequally-sized sets.

Let us define the imbalanced quadratic assignment problem using n facilities and m
locations and corresponding square cost matrices F ∈ Rn×n and D ∈ Rm×m. The linear
costs are given by B ∈ Rn×m. To simplify further steps, we may suppose that n ≥ m,
otherwise the sets to be matched are exchanged together with their cost matrices. Because
of unequally-sized sets, we can no longer assume the assignment to be a permutation
matrix. Instead some equality constraints have to be relaxed to inequality constraints.
We now define match matrices as

Π̃n,m :=

{
X ∈ {0, 1}n×m

∣∣∣ ∀j :
n

∑
i=1

Xij = 1, ∀i :
m

∑
j=1

Xij ≤ 1

}
. (2.25)
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Similar to the usual definition of quadratic assignment problems, we define the
imbalanced QAP using the trace formulation:

X∗ = arg min
X∈Π̃n,m

tr
{

FXDTXT + BXT
}

(2.26)

From now on we ignore the linear cost, as it can be handled quite easily.
When the traditional graph matching objective is extended to graphs of different

size, it is unfortunately no longer a quadratic assignment problem. We can see this by
considering

‖X A1XT − A2‖2
F = tr

{
(X A1XT − A2)(X A1XT − A2)T

}
= tr

{
(X A1XT − A2)(X AT

1 XT − AT
2 )
}

= tr
{

X A1XTX AT
1 XT − X A1XTAT

2 − A2X AT
1 XT + A2 AT

2

}
= tr

{
X A1XTX AT

1 XT
}
− 2 tr

{
A2X AT

1 XT
}

+ tr
{

A2 AT
2

}
.

(2.27)

In contrast to the balanced problem, the first term in the last row is no longer a con-
stant, since XTX is not the identity matrix. In the scope of this work it remained un-
clear whether there is another way of mapping the traditional graph matching objective
problem on a QAP in case of imbalanced problems. The only soft-assign related pub-
lication that deals with imbalanced graph matching problems is [7], where Gold and
Rangarajan used an alternative definition (see section 1.2.3), whereby graph matching is
defined as QAP. Since this seems to be the only way of approximately solving rectan-
gular graph matching problems with the graduated assignment algorithm, we assume
the QAP-based definition in the case of unequally-sized sets for the remainder of this
work.

The question remains, whether the imbalanced QAPs can be solved using meth-
ods for standard QAPs. For their graduated assignment algorithm Gold and Rangarajan
[7] introduced slack variables to transform the inequality constraints of the imbalanced
problem into equality constraints by adding an additional column to the assignment ma-
trix6. No other obvious changes to the algorithm were made, only the summation ranges
were adjusted accordingly. Particularly, the slack column was iteratively normalized to
1. As we shall see below, this procedure does not perform as intended, at least from a
theoretical point of view.

To obtain an algorithm for that the theoretical properties of the soft-assign quadratic
assignment algorithm still hold, we transform the rectangular problem into a standard
problem of the size n× n. This is achieved by extending the match matrix by n−m slack
columns forming a permutation matrix X̂ ∈ Π̂n. We furthermore extend the cost matrix
D to form a n× n matrix D̂, in which new entries are filled with 0. The resulting quadratic

6In fact, Gold and Rangarajan proposed to add a slack row as well as a slack column, but the slack row has a
different function. Section 2.4.2 will discuss this case.
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assignment problem is equivalent to the imbalanced problem, as we can see from

tr
{

FXDTXT
}

=
n

∑
i=1

(FXDTXT)ii =
n

∑
i,j=1

m

∑
k,l=1

FijXjkDlkXjl

=
n

∑
i,j=1

n

∑
k,l=1

FijX̂jkD̂lkX̂jl =
n

∑
i=1

(FX̂D̂TX̂T)ii = tr
{

FX̂D̂TX̂T
}

.
(2.28)

As the extended cost matrix D̂ does not add any cost for the slack columns, we can
immediately deduce that

min
X∈Π̃n,m

tr
{

FXDTXT
}

= min
X̂∈Π̂n

tr
{

FX̂D̂TX̂T
}

, (2.29)

i. e., the problems are equivalent. In summary, quadratic assignment problems with
unequally-sized sets can be transformed into standard quadratic assignment problems
in a quite intuitive way without any disadvantages regarding the quality of the solu-
tion.

If the graduated assignment algorithm is used to solve such a transformed problem
approximately, we can make further simplifications, which mainly influence the running
time. At every relaxation step of the discrete-time system, an initial assignment matrix
M(r,0) is calculated before the Sinkhorn balancing is applied (see algorithm 2.1, lines 7f).
We can easily see that the entries of M(r,0) that correspond to the slack variables are all
set to 1. During the following Sinkhorn balancing procedure only row and column sums
influence the result. Therefore, we can coalesce the slack columns into only one slack
column, which must be iteratively normalized to n − m, the former number of slack
columns. At this point, the method proposed in [7] and the one proposed here can be
discerned: The former normalizes the slack column to 1, whereas a normalization to
n−m yields the desired result. Section 4.2.2 gives an experimental comparison between
both methods. In summary, the proposed procedure using the coalesced slack columns
yields exactly the same assignment as the procedure using all slack columns, but saves
the space and the computation time for n−m− 1 columns.

2.4.2 Additional slack variables

Gold and Rangarajan [7] proposed to add slack variables as an extra row and column
to “handle outliers in a statistically robust manner”. In analogy to what was done
in section 2.4.1, the assignment matrix and the cost matrices can be extended by one
row and one column. We recall that this procedure will not modify the value of the
objective function, because the slack variables introduce no further cost. Moreover, the
global minimum of the objective will remain unchanged as well. Nevertheless, the slack
variables might influence the behavior of the soft-assign QAP algorithm, because the
admissible domain is enlarged. This might have advantages as well as disadvantages:
The slightly enhanced domain may help the algorithm to circumvent poor local minima;
on the other hand, this may cause the algorithm to get stuck in a non-admissible local
minimum. Section 4.3 experimentally investigates the influence of the additional slack
variables on the performance of the soft-assign quadratic assignment algorithm.
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2.5 Convergence Properties

In this section we will study the convergence properties of the preceding algorithm. We
will show that the objective function is a discrete-time Lyapunov function for the soft-
assign quadratic assignment algorithm. This is done for two cases: First, the existence is
shown under the assumption that the Sinkhorn balancing procedure returns an exactly
doubly stochastic matrix. As already mentioned, Sinkhorn balancing was shown to
converge to a doubly stochastic matrix. But the finite accuracy of machine calculations
can only provide an approximately doubly stochastic matrix. Therefore, we will study
the theoretical properties under the assumption of approximate convergence of the
Sinkhorn balancing procedure as well. It is important to note that the existence of a
discrete-time Lyapunov function itself does not guarantee that the state of the algorithm
converges. Nevertheless, Rangarajan et al. [26] noted that it should be possible to
prove convergence of the state under mild assumptions including a finite number of
fixed points. Koiran [13] drew similar conclusions for the related case of discrete-time,
continuous state Hopfield networks. The hope is, that local convergence in combination
with deterministic annealing will lead to convergence into a good local minimum, which
is reasonably close to the global minimum of the QAP objective function.

Both parts below follow more or less closely the analysis by Rangarajan et al. [26].
We will reformulate some parts of the proofs to make them easier comprehensible and
we will remove some minor flaws.

2.5.1 Exact convergence of Sinkhorn balancing

In the following study of the convergence properties, we assume that the inner Sinkhorn
balancing procedure of algorithm 2.1 returns an exactly doubly stochastic matrix. In [26]
the following theorem was proven using generic assumptions on the barrier function.
This, however, turned out to be difficult, if not impossible, for the case of approximate
convergence in the next section. Thus, the proof here uses the negative entropy barrier
function for reasons of simplicity.

Theorem 2.5 (Rangarajan et al.)
At each inverse temperature β > 0, the function

F(M) =
1
2 ∑

i,j,k,l
C(γ)

ij;kl Mik Mjl + ∑
i,j

Bij Mij +
1
β ∑

i,j
Mij log(Mij), M ∈ Rn×n

+ (2.30)

is a discrete-time Lyapunov function for the discrete-time synchronous update scheme

M(r+1)
ik = exp

[
−β

(
∑
j,l

C(γ)
ij;kl M

(r)
jl + Bik + µ

(r+1)
i + ν

(r+1)
k

)
− 1

]
, ∀i, k; r ≥ 0 (2.31)

under the conditions that the Lagrange parameter vectors µ(r+1) and ν(r+1) are set up, such that
M(r+1) is a doubly stochastic matrix, M(r) is doubly stochastic, and γ is chosen, such that C(γ)

is negative definite.
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Proof. The change of the objective function value is

∆F :=F
(

M(r)
)
− F

(
M(r+1)

)
=

1
2 ∑

i,j,k,l
C(γ)

ij;kl M
(r)
ik M(r)

jl + ∑
i,j

Bij M
(r)
ij +

1
β ∑

i,j
M(r)

ij log
(

M(r)
ij

)
− 1

2 ∑
i,j,k,l

C(γ)
ij;kl M

(r+1)
ik M(r+1)

jl −∑
i,j

Bij M
(r+1)
ij − 1

β ∑
i,j

M(r+1)
ij log

(
M(r+1)

ij

)
.

(2.32)

With ∆M := M(r+1) −M(r) and the rule 1
2 x2 − 1

2 y2 = − 1
2 (y− x)2 − (y− x)x we obtain

∆F =− 1
2 ∑

i,j,k,l
C(γ)

ij;kl∆Mik∆Mjl − ∑
i,j,k,l

C(γ)
ij;kl∆Mik M(r)

jl −∑
i,j

Bij∆Mij

+
1
β ∑

i,j
M(r)

ij log
(

M(r)
ij

)
− 1

β ∑
i,j

M(r+1)
ij log

(
M(r+1)

ij

)
.

(2.33)

If a function f (x) is convex on R, then f (y) − f (x) ≥ f ′(x)(y − x). Using this property
for f (x) = x log(x) gives

∆F ≥− 1
2 ∑

i,j,k,l
C(γ)

ij;kl∆Mik∆Mjl − ∑
i,j,k,l

C(γ)
ij;kl∆Mik M(r)

jl −∑
i,j

Bij∆Mij

− 1
β ∑

i,j

[
log

(
M(r+1)

ij

)
+ 1
]

∆Mij.
(2.34)

Let us now substitute the iteration scheme from equation (2.31) into inequality (2.34):

∆F ≥− 1
2 ∑

i,j,k,l
C(γ)

ij;kl∆Mik∆Mjl − ∑
i,j,k,l

C(γ)
ij;kl∆Mik M(r)

jl −∑
i,j

Bij∆Mij

+ ∑
i,k

[(
∑
j,l

C(γ)
ij;kl M

(r)
jl + Bik + µ

(r+1)
i + ν

(r+1)
k

)
∆Mik

]

=− 1
2 ∑

i,j,k,l
C(γ)

ij;kl∆Mik∆Mjl + ∑
i,j

µ
(r+1)
i ∆Mij︸ ︷︷ ︸

=0

+ ∑
i,j

ν
(r+1)
j ∆Mij︸ ︷︷ ︸

=0

(2.35)

The second and third term in the last row reduce to zero, because exact constraint
satisfaction is assumed at both time steps. Because of the negative definiteness of C(γ)

we finally obtain

∆F ≥ −1
2 ∑

i,j,k,l
C(γ)

ij;kl∆Mik∆Mjl ≥ 0. (2.36)

Furthermore, the objective function is bounded below, because each of its terms is
bounded below on the domain of doubly stochastic matrices. �
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From the proof, we can conclude the following

Corrolary 2.6
Theorem 2.5 also holds, if C(γ) is negative definite in the subspace of matrices with rows and
columns summing to zero.

Proof. The statement can be concluded from inequality (2.36) of the preceding proof as
well. �

2.5.2 Approximate convergence of Sinkhorn balancing

The following part discusses the convergence properties under weaker assumptions than
the previous. We no longer require the Sinkhorn balancing procedure to return an
exactly doubly stochastic matrix. Instead, an upper bound on the deviation from the
sum constraints is required.

Theorem 2.7 (Rangarajan et al.)
At each inverse temperature β > 0, the objective function

F(M) =
1
2 ∑

i,j,k,l
C(γ)

ij;kl Mik Mjl + ∑
i,j

Bij Mij +
1
β ∑

i,j
Mij log(Mij), M ∈ Rn×n

+ (2.37)

is a discrete-time Lyapunov function for the discrete-time synchronous update scheme

M(r+1)
ik = exp

[
−β

(
∑
j,l

C(γ)
ij;kl M

(r)
jl + Bik + µ

(r+1)
i + ν

(r+1)
k

)
− 1

]
, ∀i, k; r ≥ 0 (2.38)

under the following conditions:

1. The column sum constraint is exactly satisfied: ∑i M(r+1)
ij = 1, ∀j; r ≥ 0.

2. The row sum constraint is approximately satisfied:

|∑j M(r+1)
ij − 1| < ε, ∀i; r ≥ 0; 0 < ε < 1.

3. The quadratic cost matrix C(γ) is strictly negative definite with its largest eigenvalue
λ < 0.

4. The convergence criterion at each temperature is chosen such that

√
∑ij ∆M2

ij

n2 ≥ δmin

where

δmin ≥ 2

√√√√
−

ε
[
∑l maxi,j,p,k

(
C(γ)

pj;kl − C(γ)
ij;kl

)
+ maxi,p,k

(
Bp,k − Bi,k

)
+ 1

β log n−1+ε
1−ε

]
λn

.

For the proof of theorem 2.7, we will need the following bound on the Lagrange
parameter vector µ(r+1).
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Lemma 2.8
With the objective function and the update scheme as in theorem 2.7, it holds at each temperature
β > 0 that for each r ≥ 0

max
i
|µ(r+1)

i | ≤ µmax := ∑
l

max
i,j,p,k

(
C(γ)

pj;kl − C(γ)
ij;kl

)
+ max

i,p,k

(
Bp,k − Bi,k

)
+

1
β

log
n− 1 + ε

1− ε

(2.39)
under the following conditions:

1. The column sum constraint is exactly satisfied: ∑i M(r+1)
ij = 1, ∀j; r ≥ 0.

2. The row sum constraint is approximately satisfied:

|∑j M(r+1)
ij − 1| < ε, ∀i; r ≥ 0; 0 < ε < 1.

Proof. See section A.5

Proof of theorem 2.7. The first part of this proof is identical to the one for theorem 2.5.
Thus, we omit it here. From inequality (2.35) we know that

∆F ≥ −1
2 ∑

i,j,k,l
C(γ)

ij;kl∆Mik∆Mjl + ∑
i,j

µ
(r+1)
i ∆Mij + ∑

i,j
ν

(r+1)
j ∆Mij. (2.40)

Under the assumption of exact column sum constraint satisfaction, this reduces to

∆F ≥ −1
2 ∑

i,j,k,l
C(γ)

ij;kl∆Mik∆Mjl + ∑
i,j

µ
(r+1)
i ∆Mij. (2.41)

It remains to be shown that ∆F is non-negative. This is straightforward just for the
first term; it is positive because of the negative definiteness of C(γ). The second term in
the above inequality, however, can be positive or negative. In the remaining part of the
proof we will show that, given certain conditions, the first term is greater than or equal
to the absolute value of the second term, which makes ∆F clearly non-negative.

The idea of the remainder is to use an upper bound on |µ(r+1)
i | and the upper bound

λ on the eigenvalues of C(γ). The upper bound of the absolute values of the Lagrange
parameters (∀i : |µ(r+1)

i | ≤ µmax) from lemma 2.8 is used here:

µmax = ∑
l

max
i,j,p,k

(
C(γ)

pj;kl − C(γ)
ij;kl

)
+ max

i,p,k

(
Bp,k − Bi,k

)
+

1
β

log
n− 1 + ε

1− ε
(2.42)

From the lower convergence bound

√
∑i,j ∆M2

ij

n2 ≥ δmin, we receive that

−1
2 ∑

i,j,k,l
C(γ)

ij;kl∆Mik∆Mjl ≥ −
1
2

λ ∑
i,j

∆M2
ij ≥ −

λn2δ2
min

2
. (2.43)
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Using the row sum convergence criterion |∑j ∆Mij − 1| < ε, it follows that

∑
i,j

µ
(r+1)
i ∆Mij ≥ −µmax ∑

i

∣∣∣∣∣∑j
M(r+1)

ij −∑
j

M(r)
ij

∣∣∣∣∣ ≥ −2nεµmax. (2.44)

We finally obtain

∆F ≥ −
λn2δ2

min
2

− 2nεµmax ≥ 0 provided that δmin ≥ 2
√
−εµmax

λn
, (2.45)

or

δmin ≥ 2

√√√√
−

ε
[
∑l maxi,j,p,k

(
C(γ)

pj;kl − C(γ)
ij;kl

)
+ maxi,p,k

(
Bp,k − Bi,k

)
+ 1

β log n−1+ε
1−ε

]
λn

.

(2.46)
Furthermore, the objective function is bounded below (see proof of theorem 2.5). �

Similar to section 2.5.1, we can add the following

Corrolary 2.9
Theorem 2.8 also holds, if C(γ) is negative definite in the subspace of matrices with columns
summing to zero.

Proof. If λ is an upper bound for the eigenvalues of C(γ) in the subspace of matrices with
columns summing to zero, the first inequality of (2.43) is still valid and so the remainder
of the proof. �
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3.1 Artificial Neural Networks and Spin Models

Before techniques related to the soft-assign QAP algorithm are discussed, this section
briefly introduces or recalls the properties of Ising and Potts spin systems, which are
the basis for important related artificial neural network methods. Some of the following
parts are simplified, but should be sufficient to understand the underlying ideas. Please
refer to [23] for a more detailed introduction to artificial neural networks in the context
of combinatorial optimization.

3.1.1 Introduction to artificial neural networks

Strongly simplified, biological neural networks consist of a possibly large amount of in-
terconnected neurons, which interpret the signals from other neurons incoming at the
dendrites. The input signals add to each other almost linearly. The output signal of
the neuron is strongly non-linear, similar to a binary process, but with a finite continu-
ous transition zone. The output signals are transmitted to connected neurons via axons,
the “conductors”, to the synapses, which transmit the signal to the dendrites of the con-
nected neurons. The magnitude of the transmitted signal depends on the strength of the
synapse, which can grow or weaken during learning.

For artificial neural networks a simple mathematical model is constructed in analogy
to biological neural networks. The neurons are modeled as a set of bounded real values,
e. g., {vi ∈ [−1 : 1] | i = 1, . . . , n}. Neural models usually employ the following update
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rule1:

vi = g

(
∑

j
Wijvj − θj

)
, ∀i, (3.1)

where the weights Wij (corresponding to the synapses) are non-zero, if the neurons vi
and vj are connected. The θj parameters form thresholds that determine the signal levels
of the transition zones. The non-linear transfer function g is usually a sigmoidal, smooth
variant of the step function, e. g., g(x) = tanh

( x
c

)
. A parameter c is usually added to

control the steepness of the transfer function in the transition zone.
For the remainder of this chapter, we only consider neural networks of the feedback

type, i. e., neurons may feed back to themselves via other neurons. This implies that the
system may need many steps of the above update rule to converge to a stable state, or
it may not converge at all. In the following section we shall see why and how artificial
neural networks can be used to solve combinatorial optimization problems.

3.1.2 Ising spin model

Magnetic systems show striking similarities to artificial neural networks, as we shall see
in this section. Moreover, we shall understand that combinatorial optimization problems
can be interpreted as the energy minimization of a magnetic system. A magnetic system
can be described using the simple Ising model, which assumes a large number of binary
spins si ∈ {−1, 1}, i = 1, . . . , n, which describe the magnetization direction of each atom.
It is assumed that each pair of spins affects one another by a constant strength. With that,
we can define the following energy function for the Ising model:

E(s) = − J
2 ∑

i,j
sisj (3.2)

This function basically expresses that equally oriented spins lower the energy of the
system. This spin system can be generalized to the spin glass model, which has pair-
dependent, symmetric couplings between the spins. In this case the energy function can
be defined as

E(s) = −1
2 ∑

i,j
Wijsisj. (3.3)

When looking at the preceding equation, we notice the similarity to combinatorial
objective functions, e. g., to the quadratic assignment problem. Just like these objective
functions, the spin glass system (with possible negative couplings) has one or many
lowest energy states. Thus, bringing a magnetic system into its lowest energy state can
be regarded as minimization of a combinatorial objective. Nevertheless, we still have no
means of finding these lowest energy states.

The idea is now to embed the magnetic system in a thermal environment. Then,
fluctuations of the spins appear according to the Gibbs distribution on the spin states

P(s) =
exp(−E(s)/T)

Z
(3.4)

1In nothing else is denoted, summation ranges are assumed to be {1, . . . , n}.
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where Z = ∑ŝ∈{0,1}n exp(−E(ŝ)/T) and T is the temperature2. The most probable
state is the one with the lowest energy [15], hence finding the most probable state is
equivalent to minimizing the energy function. The probability distribution is used to
compute the expectation values vi of the single spins si; these are often called mean fields.
Unfortunately, the expectation values cannot be computed explicitly, but they can be
approximated. This may be done using a saddle-point approximation resulting in the
mean-field equations. We omit their tedious derivation and refer to [15] or [23]. The
mean-field equations of the spin glass model based on a Gibbs distribution are

vi = tanh
(
− 1

T
· ∂E(v)

∂vi

)
= tanh

(
1
T ∑

j
Wijvj

)
, ∀i. (3.5)

At this point we observe the relation to artificial neural networks: The tanh function
is the neural transfer function; its argument can be identified as part of the update
rule (3.1).

Thus, by using a neural network, we can approximately find the lowest energy state
of a magnetic system at temperature T, and by that approximately solve combinatorial
optimization problems.

3.1.3 Potts spin model

For approximately solving combinatorial optimization problems with artificial neural
networks, it is sometime advantageous to have a network satisfying sum constraints
automatically. This is achieved by allowing each neuron to consist of a group of values,
of which only one is 1, while the others are confined to 0. The analog spin model is the
Potts spin model, which uses spin vectors s = (s1, . . . , sn)T with s being a principal unit
vector3. The group of n spin vectors is denoted as matrix S. If we want to encode row
sum constraints into the neural network, we may define the energy function [22]4

E(S) = −1
2 ∑

i,j,k
WijSikSjk. (3.6)

If the spin model is again embedded in a thermal environment as in the previous section
and mean field equations based on the Gibbs distribution are derived, one obtains [11]:

Uik = − 1
T ∑

j
WijVjk, ∀i, k (3.7a)

Vik =
exp(Uik)

∑j exp(Uij)
, ∀i, k. (3.7b)

The Vik are the estimated expectation values of the Potts spins. From equation (3.7b), we
observe that ∑k Vik = 1, i. e., the row sums of matrix V are one. Along with the positivity

2The term Z is sometimes called partition function.
3Principal unit vectors are real vectors, of which one component is 1, the others are 0.
4We should note that this energy function has no column constraints.
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of the Vik (due to the exponential function) this may be seen as the continuous analog to
binary sum constraints.

Compared with the spin glass model, the Potts spin model has not only the advan-
tage that the configuration space is considerably reduced, but also that implementations
of this model are far more insensitive regarding parameter choice [22].

3.2 Related Neural Network Models

3.2.1 Hopfield-Tank model

The usage of continuous optimization networks for combinatorial optimization problems
was first proposed by Hopfield and Tank in 1985 [see 23]. Since then, neural network
methods for optimization have gained considerable interest. Their inherent parallelism
makes these algorithms easily implementable and fast on modern parallel architectures.
Hopfield and Tank formulated a discrete energy function for the TSP problem similar to
the one described in section 1.3.1:

Eobj(M) := ∑
i,j,k

Mki M(k+1) mod n,jDij (3.8)

where D is the distance matrix between the cities. This function is to be minimized on
the domain of permutation matrices. In principle, the energy function can be extended
to arbitrary quadratic assignment problems.

The Hopfield and Tank approach uses the spin glass model to map the combinatorial
problem on a neural network. For that, the integrality constraint of permutation matrices
is relaxed into a positivity constraint leading to the domain of doubly stochastic matrices.
The sum constraints, which bound the domain, are enforced in a “soft” way using penalty
functions; the positivity constraint is enforced using a barrier function Φ, whose relation
to neural network approaches, in particular to the transfer function, will be clarified
below. The Hopfield-Tank energy function can be written as [24]

E(M) := Eobj(M) +
A
2 ∑

i,j
∑
k 6=j

Mji Mki +
B
2 ∑

i,j
∑
k 6=j

Mij Mik +
C
2

(
∑
i,j

Mij − n

)2

+
1
β ∑

i,j
Φ(Mij).

(3.9)
The barrier function is given by

Φ(Mij) = Mij log(Mij) + (1−Mij) log(1−Mij). (3.10)

The three terms of E(M) beginning with the second favor doubly stochastic matrices;
their parameters A, B, and C are set to fixed values. The barrier parameter β is also fixed,
i. e., no deterministic annealing is performed. It proved in practice that it is impossible to
find a parameter set that guarantees convergence to a permutation matrix [24].
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Applying the mean-field approximation to the energy (while disregarding the bar-
rier function) leads to weights of the neural network and a neural transfer function:

Uik = ∑
j

M(i+1) mod n,jDkj + A ∑
j 6=i

Mjk + B ∑
j 6=k

Mij + C

(
∑
j,l

Mjl − n

)
, ∀i, k (3.11a)

Mik = g(Uik) =
1

1 + exp(−Uik/T)
, ∀i, k (3.11b)

The reason for the transfer function being different from the one in section 3.1.2, is a
deviating underlying probability distribution.

The Hopfield-Tank model may lead to states, in which the configuration does not
fulfill the doubly stochastic constraints and thus induces a configuration space with
redundancies. The alternative energy function

E(M) := Eobj +
A
2 ∑

i

(
∑

j
Mij − 1

)2

+
B
2 ∑

j

(
∑

i
Mij − 1

)2

+
1
β ∑

i,j
Φ(Mij) (3.12)

where row and column constraints are explicitly encoded did not perform substantially
better than the original Hopfield-Tank energy [24].

3.2.2 Peterson-Söderberg model

Peterson and Söderberg [22] improved the performance of neural network algorithms for
combinatorial optimization by encoding each of the n assignments with only one neuron
based on the Potts glass model, in which each spin is allowed to take n different states.
With that, one type of sum constraints can be automatically satisfied, which we already
referred to as hard constraint satisfaction. We assume a discrete energy function Eobj to
be given, e. g., by a QAP, and formulate the Peterson-Söderberg energy function as5

E(M) := Eobj +
A
2 ∑

j

(
∑

i
Mij − 1

)2

+
1
β ∑

i,j
Φ(Mij) (3.13)

where we omit the automatically satisfied row sum constraints.
For now, we suppose that a QAP objective function is given and assume an underly-

ing Gibbs probability distribution (see equation (3.4)). Deriving the Potts spin mean-field
equations, while disregarding the barrier function, yields network weights and a neural
transfer function [11]:

Uik = − 1
T

[
∑
j,l

Cij;klVjl + Bik + A

(
∑

j
Vjk − 1

)]
, ∀i, k (3.14a)

Vik =
exp(Uik)

∑j exp(Uij)
, ∀i, k (3.14b)

As we have already seen in section 3.1.3, one type of sum constraints is automatically
satisfied for the Potts spin mean-field equations. Thus, the admissible space is much

5For simplicity, we ignore the self-amplification term.
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smaller compared with the Hopfield-Tank model, which leads to improved results. Pe-
terson and Söderberg [22] furthermore embedded the model in a deterministic annealing
framework, which usually improves the solution quality, since at small temperatures the
model is closer to the original combinatorial problem.

Let us turn to the relation between barrier function and neural transfer function.
Using the Gibbs distribution to derive the mean-field equations results in the transfer
function above. We have seen in section 2.1 that for a similar case equations can be
derived using a barrier function and Lagrange multipliers. Yuille and Kosowsky [32]
explicitly showed that the Peterson-Söderberg neural network model is equivalent to a
barrier function approach with a −x log x barrier function.

When comparing the Peterson-Söderberg model with the soft-assign quadratic as-
signment algorithm, we observe that the soft-assign QAP algorithm is an extension of
this neural network model, in which two types of sum constraints are enforced, namely
row sum constraints and column sum constraints. The network weights are identical
to those of the Peterson-Söderberg model, besides the penalty term, which is no longer
needed. The neural transfer function is not given explicitly, but by an iterative scheme,
the Sinkhorn balancing.

3.2.3 Doubly Constrained Network (DCN)

As already mentioned, an algorithm similar to the soft-assign quadratic assignment
algorithm was proposed by Ishii and Sato [12], which they originally termed Doubly
Constrained Network (DCN). Translated to the variables and objective functions used in
chapter 2, they assume a minimization problem as in equation (2.1). Similar to what was
done in section 2.1, they derive the following simultaneous equations [cf. 12]:

Uik = − 1
T

[
∑
j,l

C(γ)
ij;klVjl + Bik

]
, ∀i, k (3.15a)

λk = ∑
i

exp(Uik)
∑j exp(Uij)/λj

, ∀k (3.15b)

Vik =
exp(Uik)/λk

∑j exp(Uij)/λj
, ∀i, k (3.15c)

We notice that the equations (3.15b) and (3.15c) scale each row and column sum of
exp(Uik) to 1. We see the similarity of these equations to the stationary conditions in
section 2.1.5 by looking at the beginning of proof 2.8, especially at equation (A.10).

The DCN algorithm is an iterative scheme based on these simultaneous equations,
where the λk are obtained by an iterative version of equation (3.15b) as inner loop:

λnew
k = ∑

i

exp(Uik)

∑j exp(Uij)/λold
j

(3.16)

This scheme is iterated until approximate convergence and later rescaled such that
∑k λk = 1, which is possible, since equation (3.15c) is invariant to a scale factor that is
applied to all λk.
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Ishii and Sato [11] have also formulated continuous-time schemes based on differen-
tial equations. Experimentally, however, they found these to be inferior to DCN. Further-
more, they recently proposed a promising extension to DCN [10] based on a continuous
version of the λopt heuristics6. This method was able to improve the best known feasible
solutions for two problems of the QAPLIB, but had a significantly longer running time
than DCN.

6This is an extension of the 2opt heuristics that considers the neighborhood reached by permuting partial
permutations of size λ.
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CHAPTER 4
Experimental Analysis of the Soft-assign

QAP Algorithm

4.1 Implementation Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Large Graph Matching Problems . . . . . . . . . . . . . . . . . . . . 44
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4.4 QAPLIB Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

This chapter documents an experimental analysis of the soft-assign QAP algorithm on
various problem instances. Since computer vision applications are the main motivation
of this work, graph problems naturally form the largest group of experiments performed.
They will be described in sections 4.2 and 4.3. On the other hand, the soft-assign QAP
algorithm is very generic and allows to approximate arbitrary quadratic assignment
problems. Therefore, the applicability of the algorithm to general QAPs is also assessed.
In literature, problems from QAPLIB are often used as benchmark experiments for QAP
heuristics, which makes them suitable for analyzing the soft-assign quadratic assignment
algorithm experimentally.
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4.1 Implementation Notes

To carry out the experiments documented in this chapter the soft-assign QAP algorithm
was initially implemented in Mathematica, but this proved to be too slow for extensive
tests on larger problems with about 50 nodes. Thus, a reimplementation in a language
allowing fast numerical computations became necessary. C++ in conjunction with the
Blitz++ library [30] for array computations was chosen. This library uses advanced C++
template techniques, which provide a high level syntax for array computations that have
a performance nearly equivalent to hand-optimized Fortran code [31]. This resulted
in a still easily understandable implementation, which was faster than the previous
Mathematica code.

Most other parts of the testing facilities, especially non-time-critical sections of them,
were implemented in Mathematica using the Discrete Mathematics package [29], which
provides many useful functions for graphs and graph problems. We had to write code
for dealing with weighted graphs, since this package was mainly designed for handling
unweighted graphs.

4.2 Large Graph Matching Problems

In this section we report the results from several thousand graph matching experiments
conducted on computer-generated graphs with strongly varying properties in the style
of the experiments of Gold and Rangarajan [7]. The experiments were carried out on
large graphs with mostly n = 50 nodes, which makes it intractable to solve the matching
problems to optimality, either with brute-force or branch-and-bound methods. To be
able to assess the performance of the graduated assignment algorithm on large graphs,
a means of comparison is needed, e. g., an estimation of the optimal solution. For that,
the conducted experiments used one graph generated randomly and one graph derived
from the first according to certain rules. If the methods of derivation are known and the
modifications are tracked, we can give an estimate on the best possible matching, which
is used to rate the results. Because of this restriction, the purpose of the tests in this
section is limited to qualitative analysis of the performance.

The computer-generated graphs are always simple and undirected; both weighted
and unweighted graphs are used. Let us first describe the procedure used to generate the
random graphs1. For every potential undirected edge a given probability and a random
number drawn from a uniform distribution on [0 : 1] were used to decide whether
this particular edge should be inserted. The above probability will in the following be
referred to as connectivity, although this method does not guarantee the graph to have this
particular connectivity. It is nevertheless used, because generating random graphs with a
given connectivity or rather number of edges is much more difficult [29] and unnecessary
for our purposes. For the computer-generated weighted graphs, a random edge weight
is drawn from a uniform distribution on [0 : 1].

Second, let us describe the rules for deriving the second graph from the first. The
structure of the transformation is

G1
π−−−−→ Gp

D−−−−→ G2

1This procedure was also used for the small, random graphs of section 4.3.
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where π ∈ Πn is a permutation and G1, G2 are the respective graphs. The transformation
D comprises various perturbations, which are applied to reveal the robustness of the
algorithm regarding, e. g., the removal of edges or nodes. The particular perturbations
will be described together with the experiments below, since they differ for unweighted
and weighted graphs. In both cases the modifications of the assignments are tracked.
This allows to know the correspondences with the nodes in their original state. We
use these correspondences to estimate the best possible matching. Experimentally, it
was observed that the estimations are usually good. For testing purposes, 100 small
graphs were generated to compare the estimate with the optimal assignment, which was
computed using a branch-and-bound algorithm (cf. section 4.3). For about two thirds
of the graphs the estimate and the ground-truth were identical; in most other cases a
deviation of 1% to 5% was observed. In the average the estimation was about 1.5%
worse than the optimum. We can conclude that the estimation is sufficiently good for
qualitative tests.

An important comment has to be made on the way of measuring the results of the
experiments. In their extensive study on the performance of the graduated assignment
algorithm on various types of graphs Gold and Rangarajan [7] used the number of
correctly assigned nodes as performance criterion. As they noted, this method has the
drawback that it only gives a lower bound on the number of correct matches, since it
may ignore optimal matches that do not coincide with the generating permutation. Such
a situation occurs, if there are distinct optimal assignments yielding the same objective
function value. The experiments conducted for this work use a different method of
evaluating the performance; they consider the deviation regarding the objective function,
i. e., the objective function value of the obtained assignment is compared to the value
of the reference assignment, which may be estimated or computed as described above.
This has several advantages: First, it circumvents the above mentioned problem of
ignoring optimal matches, because optimal matches always have equal objective function
values. Second, assignments with an equal number of correctly assigned nodes may have
distinct objective function values. Third, such a measurement makes it also possible to
compare the performance on random graph matching problems with the performance on
quadratic assignment problems, for which this way of performance measurement is the
de facto standard [cf. 3].

The soft-assign quadratic assignment algorithm is controlled by a number of pa-
rameters, which are partly critical, as we shall later see. The parameters can be roughly
grouped into

• parameters describing the annealing schedule,

• the self-amplification parameter γ,

• convergence and iteration bounds for the inner and outer loop,

• the cleanup method used2.

The annealing schedule is controlled by three parameters, the initial inverse temperature
β0, the annealing rate βr, and the final inverse temperature β f . If the convergence bounds

2Strictly speaking, this is no parameter, but the algorithm may have different cleanup methods.
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and the iteration bounds are controlled by only one parameter for each loop, there are
still 6 parameters to be set up for the experiments. When a graph matching algorithm is
used as a component of a more complex computer vision system, selecting parameters by
hand is disadvantageous. In that regard, the graph matching experiments in this section
use a fixed set of parameters to evaluate the performance. To study the influence of the
algorithm parameters on the quality of the solution, further experiments with varying
parameters were carried out as described in section 4.2.3. We should note here that for
simplicity the theoretical bounds of the convergence criteria derived in section 2.5 are not
enforced.

4.2.1 Unweighted graph matching

Unweighted graph matching problems are rarely used in computer vision applications.
Since unweighted graph matching problems are usually “harder” to approximate, we
still study them here. We discuss them prior to the weighted graph matching experi-
ments, because they are a special cases of weighted graph matching problems. As men-
tioned in the previous section, the experiments on large, unweighted graphs do not allow
computing the best matching, because of the immense time requirements. Therefore, the
pair of graphs to be matched is derived from each other giving an estimate on the best
solution. For the unweighted graph matching experiments, deleting edges and delet-
ing vertices are the only simple modifications that allow to track the correspondences.
Adding edges or vertices is symmetric to deleting edges or vertices from a graph with
larger connectivity or more nodes, respectively. In summary, the computer-generated
unweighted graphs are governed by the following parameters:

• Size of the first graph

• Connectivity of the first graph

• Percentage of nodes deleted in the second graph

• Percentage of edges deleted in the second graph

For each of these parameters a fixed set of values is used to test the algorithm. The
particular composition of these parameter sets will be described below. Testing every
possible combination of graph parameters from these sets would be tedious and might
also provide an amount of results that is difficult to illustrate and to comprehend.
Therefore, only variation of one parameter is considered at a time, while keeping the
other three parameters fixed to a default value.

In choosing the parameter sets the intention was to create generic graphs, i. e., the
test data should not be restricted to small classes of graphs. On the other hand, the
graphs must still have a more or less close relation, because otherwise the estimation of
the optimum might not be good. Finally, the following parameter ranges were chosen:
The number of nodes in the first graph covers a wide range from just 10 nodes, for
which the problems can easily be solved to optimality, up to 150 nodes where even
many approximation algorithms have enormous time requirements. The connectivity
of the first graph ranges from only 5% probability for a specific edge amounting to very
sparse graphs, up to 60%, which induces nearly complete graphs. The percentages of
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deleted nodes and edges vary between 0% and 60%, the first giving identical graphs
(when disregarding the permutation), the latter accounting for large changes in the
graphs. Table 4.2 gives an overview about the selected graph parameter sets; the above
mentioned default value is emphasized in each set.

Size {10, 20, 30,50,75, 100, 150}
Connectivity (in %) {5, 10, 15,20,30, 40, 60}

Nodes deleted (in %) {0, 5, 10,15,20, 40, 60}
Edges deleted (in %) {0, 5, 10,15,20, 40, 60}

Table 4.2: Parameter sets for the unweighted graph matching experiments

Instead of generating a random graph for each of the experiments, as it is done, e. g.,
for the varying connectivity, the first graph is kept fixed for a run using a varying degree
of deleted vertices, while the percentage of deleted vertices is incrementally increased.
This gives an improved coherence of the experimental results. The case of deleted edges
is handled analogously.

After having studied the procedure for generating test data, let us turn to the
algorithm. All unweighted graph matching experiments use the QAP based definition
of graph matching, because most of the instances are rectangular. The edge weight
compatibility function f is simply the product of the edge weights. Additional slack
variables as discussed in section 2.4.2 were not used, because experiments with them
showed that the performance difference is low and that the qualitative behavior is
virtually unchanged3. The simple binarization proposed in section 2.2.3 is used, which
picks one of the largest entries in each column of the continuous assignment matrix to
produce a match matrix. This method of binarization is always assumed in this chapter,
if not noted otherwise. For simplicity a cleanup by linear assignment was not employed,
since the returned assignment matrix was mostly row dominant and close to a match
matrix. The 2opt heuristics, however, showed significant improvements (see below) and
was thus selected for the experiments. The remaining algorithm parameters were set to:
β0 = 1, βr = 1.075, β f = 10, γ = 0, δ = 0.0001, r f = 4, ε = 0.001, s f = 30.

To give a reasonable amount of statistical significance, 100 runs4 were conducted for
each tested parameter quadruple, except for the larger problems with 75, 100, and 150
nodes, for which only 75, 50, and 10 tests were run, respectively. The running time for
a single experiment on a current PC (Pentium III, 700 MHz) varied from fractions of a
second for 10 node graphs up to 2 hours for some graphs with 150 nodes. For 50 node
graphs, the running time was under a minute. As discussed above, the performance
is measured by the objective function value; the diagrams show the ratio (in percent)
of the objective function value obtained by the soft-assign QAP algorithm to the value

3The confidence interval of the mean at a confidence level of 95% was computed (using the t-test) for the
results of the experiments with additional slack variables. The interval included the average result of the
unmodified algorithm in all cases. Thus the performance change is probably not significant.

4New graphs were generated in each run, but with fixed graph parameters.
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Figure 4.1: Performance on unweighted graph matching problems (I)
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estimated using the generating permutation. Figures 4.1 and 4.2 show the results of
the 2635 overall experiments. The figures include the mean performance as well as the
standard deviation.
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Figure 4.2: Performance on unweighted graph matching problems (II)

Looking at the results, we see that the soft-assign quadratic assignment algorithm
suffers from scaling problems. The experiments with 75 or fewer nodes show a mean
performance of at least 85% of the estimated optimum, but the larger instances exhibit
a strongly decreasing performance. The connectivity of the graphs, however, seems to
have little influence on the performance. The varying percentages of deleted vertices and
edges reveal a similar profile; the algorithm performs well on slight and large changes,
but worse on problems with medium amounts of perturbation. This can be explained by
the fact that it might be easier to find a similar subset regarding the nodes or edges of
the first graph, if the second graph is considerably smaller regarding the same features.
Compared to what Gold and Rangarajan [7] found for a relaxation labeling algorithm,
the results obtained here are much better. When comparing the results to those of [7],
we notice that the percentage of correctly assigned nodes is considerably worse than
the percentage ratio of the objective function values. This is attributable to multiple
equivalent matchings of unweighted graphs and to the fact that wrongly assigned nodes
may still contribute to the objective function.

Improvement of 2opt greedy strategy

The second set of experiments conducted on unweighted graph matching problems eval-
uated the 2opt greedy strategy as cleanup heuristics, performed on instances with vary-
ing percentage of deleted edges. The algorithm parameters used for these experiments
were the same as above. The soft-assign quadratic assignment algorithm with the bina-
rization as proposed in section 2.2.3 delivers the reference result, to which the soft-assign
QAP algorithm with an additional 2opt greedy strategy is compared. Figure 4.3 shows
the improvement obtained by the 2opt heuristics in percent averaged over 100 runs for
each parameter value. The additional marks in the diagram show the confidence in-
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Figure 4.3: Improvement by 2opt heuristics (unweighted graph matching)

terval of the mean at a confidence level of 95%, which was computed using the t-test.
We observe that the improvement varies around 2% with the lower confidence bound
exceeding 0 for all parameter values except the first; thus, the improvement can be as-
sumed to be significant for most parameter values. The running time for the heuristics
was negligible compared to the rest of the algorithm. Because the 2opt heuristics is an
effective means of improving the solution quality, it is used for most of the experiments
in this chapter.

4.2.2 Weighted graph matching

In addition to the unweighted graph matching experiments, the soft-assign quadratic
assignment algorithm was extensively tested on weighted graph matching problems,
because they are important for computer vision applications. The experiments were
designed as in the previous section, except that edge weights had to be selected and
are furthermore candidates for perturbation. The edge weights are, as mentioned above,
drawn from a uniform distribution on [0 : 1]. They are perturbed with multiplicative
noise, which tries to subsume noise of various sources, which in practice influences the
determination of the edge weights. As we do not suppose any knowledge on the way
of determining the weights, Gaussian noise is assumed to perturb the edge weights. In
summary, the following parameters control the test data:

• Size of the first graph

• Connectivity of the first graph

• Percentage of nodes deleted in the second graph

• Percentage of edges deleted in the second graph

• Standard deviation of noise to perturb the edge weights in the second graph
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The first four parameters are already known from our experiments on unweighted graph
matching problems; thus, we omit their description here. The general test procedure
remained unchanged, hence the influence of each parameter for generating the graphs
is evaluated separately, while keeping the remaining parameters fixed to a default
value.

The graph parameter sets were initially chosen as for the previous experiments.
Only an additional parameter set for Gaussian noise was introduced covering 0% to
36% standard deviation. An initial evaluation of these parameter sets revealed that the
algorithm performed relatively close to 100% of the expected objective function value for
most of the parameter vectors. Figure 4.4 shows the results of experiments with varying
degree of deleted edges, conducted as in the previous section besides additional edge
noise with 18% standard deviation.
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Figure 4.4: Performance on weighted graph matching problems (I)

For the actual weighted graph matching experiments, the parameters were shifted
toward more interesting parts with larger variation in the results. Table 4.4 gives an
overview about the selected parameter sets; the default value is again emphasized.

Size {10, 20, 30,50, 75, 100, 150}
Connectivity (in %) {4, 8, 12,18, 25, 35, 50}

Nodes deleted (in %) {10, 16, 22,28, 35, 45, 60}
Edges deleted (in %) {10, 16, 22,28, 35, 45, 60}

Standard deviation of noise (in %) {0, 6, 12,18, 24, 30, 36}
Table 4.4: Parameter sets for the weighted graph matching experiments

Let us turn to the algorithm. The experiments on weighted graphs use the alternative
graph matching objective, which defines graph matching as QAP, because all problem
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instances are rectangular. The compatibility function f is sensibly chosen such that fully
matching pairs yield a fixed positive value, usually 1, and that all less well matching pairs
yield smaller, though positive values. Presuming that the edge weights are uniformly
distributed over some interval, Gold and Rangarajan [7] chose f to yield a mean of 0.

When we assume that the weights are drawn from a uniform distribution on [0 : 1],
the compatibility function

f (A1;kl , A2;ij) = 1− 3|A1;kl − A2;ij| (4.1)

fulfills all the desired properties, since two values drawn from this distribution are in the
average one third apart. It is easily verified that for unweighted, equally-sized graphs
with the adjacency matrices A1, A2 ∈ {0, 1}n×n, the costs of this approach are equivalent
to those of the traditional approach.

Regarding the cleanup heuristics, all statements of the previous section apply here
as well. Nevertheless, the remaining algorithm parameters were chosen differently to
optimize performance: β0 = 1, βr = 1.15, β f = 13.3, γ = 0.75, δ = 0.001, r f = 3, ε =
0.01, s f = 10.

As for the unweighted graph matching experiments, 100 runs were carried out on
each tested parameter vector, except for the larger problems with 75, 100, and 150 nodes,
where only 75, 50, and 10 runs were conducted, respectively. The running time for
each experiment was shorter compared to the unweighted graph matching experiments,
because of earlier convergence, earlier truncation of the loops, and a larger annealing
rate. As before, the results are measured using the objective function value; the diagrams
show the ratio of the objective function value obtained by the soft-assign QAP algorithm
to the function value estimated using the generating permutation. Figures 4.5 and 4.6
show the results of the 3335 overall tests. When comparing the results to the unweighted
graph matching experiments, it has to be considered that the weighted graph matching
problems are generally perturbed much stronger.

The results differ in some points from those encountered in the previous section5.
First, the size of the problem has less influence on the results; even with very large
graphs nearly perfect results are observed. The connectivity, in contrary, has a slightly
larger influence on the results; the performance at low connectivities is worse than at
high connectivities. The results on varying percentages of deleted nodes resemble those
of the previous section, whereas the performance on varying degrees of deleted edges
has a monotonically decreasing profile for higher percentages of deleted edges. The case
of deleted vertices can be explained as in the previous section; the other case is more
difficult to interpret. It might be possible that finding a similar subset corresponding
to a small second graph is harder, if the edges have weights. We further observe that
nearly optimal results are obtained for slight amounts of noise; larger standard deviations
exhibit a nearly linearly decreasing performance. Compared to the results of [7], we
again notice that the percentage of correctly assigned nodes is considerably worse than
the percentage ratio of the objective function values.

5When the unweighted graph matching experiments are carried out with the algorithm parameters of this
section, the results are worse, but show a profile that is comparable to the original one. Hence, the algorithm
parameters do not account for the changed results.
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Figure 4.5: Performance on weighted graph matching problems (II)
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Figure 4.6: Performance on weighted graph matching problems (III)
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Improvement of 2opt greedy strategy

As for the unweighted graph matching experiments, the influence of the 2opt heuristics
on weighted graph matching problems was studied as well. The test procedure was like
the one in section 4.2.1, except that the graph parameters sets of table 4.4 were used.
Figure 4.7 shows the results of the overall 700 tests. The additional marks in the diagram
show the confidence interval of the mean at a confidence level of 95%. As in section 4.2.1,
the performance increase varies around 2%, but shows a larger standard deviation and is
only significant for 4 parameter values. This is probably a result of the rougher annealing
schedule.
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Figure 4.7: Improvement by 2opt heuristics (weighted graph matching)

Influence of slack normalization method

In section 2.4.1, we discussed two alternative ways of handling rectangular graph match-
ing problems. Two implementations were theoretically compared, one using the slack
normalization proposed in section 2.4.1, the other using the normalization as proposed
by Gold and Rangarajan [7]. To assess their performance difference experimentally, 700
tests with varying degree of deleted edges were conducted. The testing procedure is
adapted from the previous weighted graph matching tests. The ratio of the objective
function values was measured using the normalization proposed in this work as refer-
ence measure. Figure 4.8 shows the results of the experiments. Again, additional marks
show the confidence bounds of the mean at 95% confidence. In most cases the change is
not significant toward any direction, except for one parameter value where we observe
a significant performance deterioration of the normalization proposed by Gold and Ran-
garajan. We conclude that the normalization proposed in section 2.4.1 is probably also
better in practice.
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Figure 4.8: Influence of slack normalization method

4.2.3 Influence of algorithm parameters

In the previous section, the conducted experiments used fixed parameter sets for the
algorithm to keep the overall parameter space manageable. Nonetheless, experiments
with varying algorithm parameters provide useful information, for example, about the
robustness of the algorithm regarding its parameters.

The studies with varying algorithm parameters were carried out using weighted
graph matching problems with 50 nodes, which were generated using the procedures of
section 4.2.2. The parameters for generating the graphs were fixed to the default values
of table 4.4.

The algorithm parameters to be tested can be categorized in three groups: the
annealing parameters, the self-amplification parameter γ, and the loop bounds. The
annealing parameters are the initial inverse temperature β0, the annealing rate βr, and
the final inverse temperature β f . To simplify the tests, the convergence and the iteration
bounds were controlled by only one scale parameter each; these are rr and sr for the outer
respective inner loop. The convergence bounds (δ = 0.001, ε = 0.01) are scaled with the
inverse factor, the iteration bounds (r f = 3, s f = 10) with the unmodified factor. To
keep the number of tests and results manageable, only one parameter was varied for
a series of experiments, while the other parameters were kept at default values. These
were: β0 = 1, βr = 1.15, β f = 13.3, γ = 0, rr = 1, sr = 1. For each parameter vector
50 runs were conducted. To increase the coherence of the results, only one pair of graphs
was generated per run to test the complete parameter range.

As before, the results are measured by the objective function value, but they are
normalized to the best result obtained on the parameter range. This normalization is
performed, since we are not interested in the absolute result, but in the result relative to
other parameter values. Figures 4.9 and 4.10 show the results of overall 4200 tests.

Let us discuss the results. We see that the algorithm shows a nearly constant
sensitivity to the initial inverse temperature, as long as it is high enough. We would
expect that, since at high temperatures the algorithm might converge into a trivial fixed
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Figure 4.9: Performance influence of algorithm parameters (I)
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Figure 4.10: Performance influence of algorithm parameters (II)
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point (cf. section 2.3.2). Nevertheless, the standard deviation is non-zero, which suggests
that a careful setting will improve the results. The non-zero standard deviation can
be explained by the finite annealing rate. Variations of the initial temperature cause
the temperature steps to lie at different values; hence the algorithm may miss certain,
perhaps important bifurcations. The annealing rate shows a range with little variation of
the mean and a small standard deviation, which enables us to chose a good value, at least
if we assume the graph pairs to have properties similar to the tests here. Ishii and Sato
[11] reported for their experiments using the DCN algorithm that a smaller annealing
rate always leads to better solutions. This, however, could not be reproduced for the tests
conducted here (cf. section 4.4). The final inverse temperature has a limited parameter
range, in which the algorithm shows little parameter sensitivity. The deteriorating
performance for high values is probably due to the 2opt heuristics, whose success
strongly depends on the condition of the pair-exchange neighborhood.

At low values the self-amplification parameter shows little variation of the mean,
but a considerable standard deviation. The performance strongly deteriorates for high
values. This is surprising, since the theoretical studies of section 2.3.1 gave a lower bound
for γ. We infer that the fulfillment of the theoretical bound alone does not guarantee good
results. In addition, the large standard deviation suggests that the selection of the self-
amplification parameter is crucial to optimal performance.

The results on experiments with varying outer loop scales exhibit nearly no variation
of the mean and a nearly vanishing standard deviation, as long as a lower bound is
exceeded. That suggests that good values can be found, at least if the properties of
the graph pairs are comparable to the experiments here. The inner loop shows little
variation in the performance and also a relatively small standard deviation; higher loop
scale factors mostly improve the results. In summary, the annealing schedule and the
self-amplification parameter are crucial to optimal performance; the optimization of the
convergence and iteration bounds is less critical but a good setting may further improve
the results.

Although the initialization of the soft-assign QAP algorithm is not directly controlled
by a parameter, it nevertheless might influence the results, since it uses random values.
To determine the influence, 100 runs were conducted for several computer-generated
problems with default parameter sets. Despite the random initialization, the returned
objective function value was the same for all runs on each graph pair. We thus conclude
that the initialization is uncritical.

4.3 Graph Matching Problems with Known Ground-truth

In this section we will complement our graph matching studies with a series of tests
conducted on small, weighted graphs, for which the computation of the optimal solution
is still tractable. The size of the instances is therefore limited to about 15 vertices, which
was also chosen for the experiments.

In contrary to the weighted graph matching experiments described above, the
graphs to be matched can be generated independently of each other, since the optimal
solution is computed and not estimated. For that, each graph is generated randomly with
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without slacks/lin. asg./2opt with 2opt

Connectivity worst mean std. dev. omax worst mean std. dev. omax

5% 0.0000 0.9191 0.1287 27 0.7543 0.9739 0.04492 50
10% 0.5594 0.9051 0.07983 5 0.8076 0.9478 0.04728 12
20% 0.0000 0.8981 0.1516 2 0.8196 0.9496 0.03883 6
30% 0.5581 0.9427 0.06240 2 0.8454 0.9585 0.03050 6
40% 0.7520 0.9494 0.04426 6 0.8813 0.9607 0.02792 8
60% 0.7956 0.9560 0.03342 4 0.9102 0.9688 0.01881 6

with slacks with linear assignment

Connectivity worst mean std. dev. omax worst mean std. dev. omax

5% 0.0000 0.9136 0.1309 27 0.0000 0.9248 0.1264 32
10% 0.6831 0.9142 0.06434 4 0.5594 0.9068 0.07847 5
20% 0.0000 0.9107 0.1261 1 0.0000 0.9134 0.1506 5
30% 0.5023 0.9421 0.06109 3 0.5850 0.9514 0.04858 3
40% 0.6621 0.9453 0.05664 6 0.7520 0.9545 0.03989 6
60% 0.6253 0.9539 0.04370 4 0.8054 0.9634 0.02641 5

with slacks/lin. asg./2opt theor. convergence bounds

Connectivity worst mean std. dev. omax worst mean std. dev. omax

5% 0.7357 0.9720 0.04872 49 0.0000 0.6643 0.2918 12
10% 0.8076 0.9495 0.04616 11 0.0000 0.2342 0.2302 0
20% 0.8560 0.9494 0.03665 6 0.0000 0.1691 0.1043 0
30% 0.8696 0.9588 0.02855 5 0.08374 0.2810 0.09843 0
40% 0.8940 0.9610 0.02605 7 0.2301 0.3958 0.08769 0
60% 0.9191 0.9684 0.01828 7 0.3358 0.5473 0.07196 0

Table 4.5: Performance on small, random weighted graphs
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with 2opt with slacks with lin. assignment

Connect. lower b. upper b. lower b. upper b. lower b. upper b.

5% 0.02782 0.08176 −0.04167 0.03073 −0.02986 0.04128
10% 0.02440 0.06105 −0.01115 0.02930 −0.02039 0.02376
20% 0.02054 0.08256 −0.02632 0.05147 −0.02678 0.05749
30% 0.002064 0.02952 −0.01777 0.01667 −0.006906 0.02430
40% 0.001010 0.02167 −0.01824 0.01012 −0.006629 0.01687
60% 0.005266 0.02042 −0.01286 0.008846 −0.0009741 0.01583

with sl./lin. asg./2opt theor. converg. bounds

Connect. lower b. upper b. lower b. upper b.

5% 0.02570 0.08014 −0.3179 −0.1917
10% 0.02622 0.06265 −0.7191 −0.6227
20% 0.02039 0.08221 −0.7653 −0.6927
30% 0.002524 0.02966 −0.6847 −0.6387
40% 0.001514 0.02180 −0.5730 −0.5341
60% 0.004948 0.02000 −0.4243 −0.3929

Table 4.6: Confidence Intervals of the mean difference

Connectivity β0 βr β f γ rr sr

5% 1.0 1.15 20 0.25 2.5 1
10% 1.0 1.15 40 0.25 1 1
20% 1.0 1.15 40 0 2.5 1
30% 1.0 1.075 40 0 1 2.5
40% 1.0 1.075 40 0 1 2.5
60% 0.5 1.075 40 0 2.5 1

Table 4.7: Parameters of the experiments with small, random weighted graphs
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the connectivity as its only parameter. This also means that the graphs to be matched only
have the connectivity, their size, and the range of the edge weights in common.

For computing the optimal solution, the implementation of a branch-and-bound al-
gorithm was used, which is distributed in conjunction with the data of the QAPLIB [3].
It is based on the well-known Gilmore-Lawler Bound [21, pp. 19f]. Because this imple-
mentation is not capable of using floating point edge weights, integer problems were
generated with edge weights ranging from 0 to 100, which is no significant limitation.
The set of connectivities was taken from the large graph experiments (cf. table 4.4). For
each connectivity value, the tests series comprised 100 experiments.

So far, we have not discussed the details regarding the algorithm. The traditional
graph matching objective was used for the experiments in this section, because the in-
stances are balanced. Experiments with and without additional slack variables as pro-
posed by Gold and Rangarajan [7] (cf. section 2.4.2) were conducted. The performance
impact of the 2opt heuristics was tested as well. In addition, an alternative cleanup
heuristics was evaluated, which uses a simple linear assignment problem to binarize the
assignment matrix. Subsequently, a series of tests was run using all three techniques,
additional slack variables, linear assignment, and the 2opt heuristics. The algorithm pa-
rameters were semi-automatically optimized for a small subset of each test series using
48 distinct parameter vectors. The initial temperature was chosen high enough to exceed
the critical temperature. Table 4.7 shows the algorithm parameters determined. The in-
ner and outer loop was controlled by only one parameter each. The convergence bounds
(δ = 0.0001, ε = 0.001) were scaled with the inverse scaling parameter, the iteration
bounds (r f = 4, s f = 30) with the scaling factors rr and sr themselves. The convergence
bounds determined are not equal among the test series; tighter bounds did not always
yield better results. A spot check on the instances with 30% connectivity revealed that a
scale factor of rr = 2.5 decreased the average performance by approximately 2.5%. We
should note that the convergence related parameters of the experiments described above
do not necessarily fulfill the theoretical bound derived in section 2.5. Because the focus
here is on quantitative results, another series of tests was carried out that used conver-
gence parameters set up to fulfill the theoretical bounds. The parameters were chosen as
in [26] (ε = 10−6, λ = 0.01).

The results are given in table 4.5, which shows the worst and the mean performance
on the data together with the standard deviation. The best performance was 100% for
all connectivity values and algorithm variations. In addition, the number of optimal as-
signments (as determined by an optimal objective function value) found (omax) is shown.
Table 4.6 gives the confidence intervals of the mean difference. These intervals were com-
puted at a confidence level of 95% with the unmodified algorithm as reference.

When looking at the results, we notice that each test series of the unmodified
algorithm shows satisfactory results with optimized algorithm parameters. Although
the parameter optimization was performed only on a small subset of the test data,
the parameter values seem to be suitable for nearly the whole series of tests. The
measured improvement obtained by the 2opt heuristics is comparable to the previous
results, i. e., about 1% to 5% improvement. The confidence intervals again document
a significant improvement. Furthermore, we see that additional slack variables induce
only a marginal improvement, for some connectivity values even a deterioration. Their
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use is arguable, if we furthermore consider that the change is not significant (based on
the confidence intervals) toward any direction. The linear assignment cleanup technique
also shows mixed results; the confidence intervals show no significant change, but a
tendency toward a small improvement might be assumed. The combination of all three
aforementioned techniques performs similar to the algorithm with the 2opt heuristics
alone. The satisfaction of the theoretical convergence bounds yields surprisingly bad
results. Their mean performance is significantly worse compared to the tests using fixed
bounds. One possible interpretation of these results is that the strict convergence into a
local minimum causes the algorithm to get stuck in a bad local minimum. Furthermore,
the theoretical bounds lead to an early termination of the outer loop (δ ≈ 0.02), which
may prevent the algorithm from tracking important bifurcations. Different parameters
for the latter experiments were not able to improve the performance considerably.

4.4 QAPLIB Problems

The final part of the experiments uses instances from the well known QAPLIB, a compi-
lation of quadratic assignment problems from various applications. The size of the prob-
lems ranges from only 12 facilities up to 256 facilities. For some of the given instances
up to 32 facilities the optimal solution is known. In the other cases, the library gives the
objective function value of best approximation method as well as the best known lower
bound for the solution. Many of the problems in the QAPLIB can be characterized as dif-
ficult, because the gap between the best approximate solution and the best found lower
bound is often 30% or more.

The experiments were conducted using the soft-algorithm QAP algorithm with
additional slack variables, linear assignment as cleanup heuristics, and the 2opt heuristics
for local improvement of the solution. The parameters of the algorithm were determined
semi-automatically using a fixed set of values for each parameter. The convergence
and iteration bounds were again controlled by only one scale parameter each. The
values to be scaled were the same as in section 4.3. For problems with n ≤ 40, 196
different parameter vectors were tested; for 40 < n < 100 only 6 parameter vectors were
employed. Finally, the experiments for very large instances of n ≥ 100 used only two
parameter vectors. For simplicity, the initial temperature is not enforced to exceed the
critical temperature.

Table 4.8 shows an excerpt of the results of the experiments. We should note that
the size of the problem is encoded into the problem name. If the optimal value is
known, it is given in the table. If the optimum has not (yet) been found, the best known
approximation value is given and marked with an asterisk (*). For every instance, the
best objective function value prior and after the 2opt optimization step is shown. The
parameters in table 4.8 are those of the run that yielded the best result after the 2opt
greedy strategy was applied. See table A.1 in section A.6 for the results of all except one
symmetric QAPLIB instances6.

To assess the performance difference between separately optimized parameters and
a fixed parameter set, some of the experiments were also carried out using the fixed

6The instance Tai256c was omitted.
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Name feas. solution w/o 2opt w/ 2opt β0 βr β f γ rr sr

Chr12a 9552 14406 9916 0.5 1.15 40.0 0.25 1 1

Had20 6922 7258 6934 0.5 1.15 20.0 0.25 1 1

Nug30 6124∗ 6676 6186 0.5 1.05 20.0 0.25 2.5 1

Esc32a 130∗ 152 134 0.5 1.025 20.0 0 1 1

Sko56 34458∗ 39616 35200 0.5 1.05 20.0 0.25 1 1

Tai80a 13557864∗ 15385348 13990144 0.5 1.05 20.0 0.25 1 1

Wil100 273038∗ 290534 274458 0.5 1.05 20.0 0.5 1 1

Tho150 8134030∗ 9148466 8275938 0.5 1.05 20.0 0.5 1 1

Table 4.8: Excerpt of QAPLIB results

algorithm parameters β0 = 0.5, βr = 1.075, β f = 20, γ = 0, rr = 1, sr = 1. Table 4.9
shows the performance of the different runs.

w/o param. optimization w/ param. optimization

Name w/o 2opt w/ 2opt w/o 2opt w/ 2opt

Chr12a 22516 10214 14406 9916
Chr12b 18884 10102 13888 9742
Tai12a 256874 241738 245006 230704
Scr15 70788 55448 65632 51140
Chr15a 22884 12152 12900 10976
Chr15b 37762 10800 15776 8640
Chr15c 37712 13556 16528 11352

Table 4.9: Performance with and without parameter optimization

The results of the QAPLIB experiments show that good feasible solutions could be
obtained for most of the instances, often deviating less that 5% from the optimum. We
observe that the exhaustive parameter search for the small problems did not yield much
improved results compared with the parameter search for the medium-sized problems
(assuming that they are of comparable difficulty). We furthermore notice that even
instances of the same source have distinct optimal parameter vectors. The convergence
bounds show a similar behavior as in the last section; tighter bounds do not always
improve the result. In addition, smaller annealing steps only sometimes yield better
results. When looking at table 4.9, we observe that the parameter optimization strongly
improved the results, especially if no 2opt heuristics was applied. For these instances,
the performance without parameter optimization was similar to the performance on
weighted graph matching problems. When we compare the results presented here
with the results on a few QAPLIB problems obtained using the DCN algorithm [11],
we observe that the results given here are worse although the algorithm is practically
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identical. The gap of the objective function value for the QAPLIB instance Tai20a is
3.5% in our case, while it is only 1.3% for the DCN. This is probably a result of inferior
algorithm parameters: Ishii and Sato gave some of their parameters used to obtain the
results; the parameters strongly vary between the different instances and suggest that
Ishii and Sato probably tested large sets of parameter vectors.
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CHAPTER 5
Summary

Object recognition is a central topic of computer vision research. In particular, view-based
object representations gained considerable interest. Object views are often expressed as
a set of features with relations on them, which can be represented as weighted graph.
Thus, matching weighted graphs is a requirement of many view-based object recognition
systems, but it is computationally very hard and for large instances intractable on today’s
computers. Hence, there is a strong interest for approximation algorithms that find
suboptimal solutions to these matching problems in polynomial time.

In chapter 1 we formally defined the weighted graph matching problem and saw
that it is a special case of the quadratic assignment problem (QAP). We formulated QAPs
in several ways and saw that they form a broad class of combinatorial optimization prob-
lems, which comprises many classical problems like the traveling salesman problem.
Furthermore, we introduced some of the most important classes of approximation al-
gorithms for QAPs.

The soft-assign quadratic assignment algorithm is an approximation algorithm for
QAPs, which recently gained significant interest. In chapter 2 we derived this algorithm
step-by-step, closely studying every component. After presenting the algorithm, we
discussed the influence of some of the algorithm parameters theoretically, namely the
self-amplification parameter and the initial inverse temperature. For both lower bounds
could be estimated that guarantee certain properties. Subsequently, we studied how
rectangular matching problems can be approximately solved using the graduated as-
signment algorithm. We saw that the rectangular graph matching problem in its tradi-
tional definition is no longer a quadratic assignment problem. Furthermore, we observed
that the time and memory requirements of the soft-assign QAP algorithm on rectangular
QAPs can be reduced without any deterioration of the solution quality. The final section
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of chapter 2 was devoted to important convergence related properties based on different
assumptions regarding the algorithm. The theoretical results suggest that the algorithm
converges locally regarding the objective function under certain assumptions.

After briefly introducing artificial neural networks in chapter 3, we discussed re-
lated neural network techniques for combinatorial optimization including the Doubly
Constrained Network (DCN), which is very similar to the soft-assign QAP algorithm.
Furthermore, we described the relation of the soft-assign quadratic assignment algorithm
to neural network algorithms.

An experimental analysis of the algorithm using various graph matching and
quadratic assignment problems was documented in chapter 4. We introduced methods
of generating graphs either randomly or by derivation, followed by a discussion about
the measurement of the results. Several thousand graph matching experiments were
conducted, both on unweighted and on weighted graphs. They revealed that the soft-
assign QAP algorithm shows comparably good solutions on the different instances using
fixed algorithm parameters, except for large unweighted graph matching problems. The
2opt cleanup heuristics showed a significant improvement of the results for most of the
experiments. Tests of the parameter sensitivity on weighted graph problems revealed
mixed results. For these graphs, the soft-assign QAP algorithm is relatively insensitive
to some of the parameters, but others are crucial for optimal performance, especially the
annealing schedule and the self-amplification parameter. In addition, experiments on
small graphs, for which the optimal solution can be computed, were conducted. For
these experiments the parameters were tuned on a subset of the test data. The choice
of the convergence bounds was observed to be important for optimal performance on
these instances. The experiments showed nearly equally good performance on most in-
stances and revealed that minor modifications of the algorithm, namely additional slack
variables and cleanup by linear assignment, do not considerably improve the results.
Surprisingly, the fulfillment of the theoretical convergence bounds yielded significantly
worse performance results.

Finally, experiments were carried out on all symmetric QAPLIB [3] instances, which
showed that the gap to the optimal solution is often less than 5%, provided that the al-
gorithm parameters were semi-automatically tuned for every instance. However, a com-
parison with results on some QAPLIB problems computed using the very similar DCN
algorithm suggests that a more thorough parameter choice still yields strongly improved
results. In summary, chapter 4 showed that the soft-assign quadratic assignment algo-
rithm needs manual or semi-automatic parameter tuning procedures on hard problem
instances to produce good results. All three parameter groups, namely annealing param-
eters, self-amplification parameter, and convergence and iteration bounds are important
for optimal performance, whereby the first two groups showed the largest performance
impact. On easier instances fixed parameter settings might be sufficient in practice.
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A.1 Multigraph Matching

In this section we will introduce a mapping of the multigraph matching problem onto
a quadratic assignment problem in the general form by Lawler. Multigraphs deviate
from standard weighted graphs by allowing each pair of vertices to have multiple links,
whereby a weight is associated with every link.

In computer vision applications, attributed relational graphs [e.g. 17] are more com-
mon, but can be expressed as a slightly enhanced multigraph. Multigraphs are used here,
because they are a standard type in graph theory. We will use them with a small gene-
ralization; their vertices have an associated weight vector. Let us formalize the multi-
graphs. We assume that the graphs to be matched, here denoted as G1 = (V1, E1) and
G2 = (V2, E2), each have n vertices (|V1| = |V2| = n). V1, V2 are indexable sets of ver-
tices

{
vp;0, . . . , vp;n

}
, p = 1, 2. Each graph has an associated vertex weight function as-

signing a vector of real weights to each vertex (wv;1 : V1 → Rm and wv;2 : V2 → Rm).
We assume that each set of edges E1, E2 has a corresponding function f1 : E1 →{

(u, v) ∈ V1 ×V1
∣∣ u 6= v

}
and f2 : E2 →

{
(u, v) ∈ V2 ×V2

∣∣ u 6= v
}

, which assigns a pair
of vertices to each element out of the set of edges. We observe that this is more flexible
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than the traditional notion of graphs, because multiple links are allowed. Finally, we as-
sign an edge weight function to each set of edges: we;1 : E1 → R+ and we;2 : E2 → R+.

Unfortunately, adjacency arrays (with three dimensions) cannot be derived in a
straightforward way, because the number of parallel edges is not limited in the above
definition. Nevertheless, we can directly define the graph matching problem as a
quadratic assignment problem similar to the traditional form (cf. section 1.2.1). The edge
weights are, as usual, comprised by the quadratic costs:

Cij;kl := ∑
p∈E1

∑
q∈E2

we;1(p) · we;2(q) · δ f1(p),(v1;k ,v1,l) · δ f2(q),(v2;i ,v2,j), ∀i, j, k, l (A.1)

The vertex weights form a linear cost matrix

Bij := wv;1(v1,j)Twv;2(v2;i), ∀i, j. (A.2)

By that, multigraphs or attributed relational graphs can be approximately matched using
the soft-assign quadratic assignment algorithm.

A.2 Properties of Kronecker Products

The following section gives some basic properties of Kronecker products, which are
needed in this work. Proofs of their correctness are omitted here, since [9] contains in-
depth descriptions of the properties and their proofs.

For two matrices A ∈ Rm×n and B ∈ Rr×s the Kronecker product is defined as

A⊗ B :=
(

AijB
)m,n

i,j=1 ∈ Rmr×ns. (A.3)

Kronecker products are obviously linear regarding both matrices. Furthermore, it
can be shown to be associative and distributive with respect to addition. Naturally, it is
not commutative.

For some of the following properties, matrices are needed, whose columns are
stacked into one large vector. For A ∈ Rm×n this is defined as

vec A := (A·,i)
n
i=1 ∈ Rmn. (A.4)

The following properties are given in an informal way. They are only valid under
intuitively recognizable circumstances, i. e., compatible dimensions or invertibility.

(A⊗ B)T = AT ⊗ BT

(A⊗ B) (C ⊗ D) = AC ⊗ BD

(A⊗ B)−1 = A−1 ⊗ B−1

tr{AB} =
(

vec AT
)T

vec B

vec(AXB) =
(

BT ⊗ A
)

vec X
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A.3 Projection into the Subspace of Annihilated Column
Sums

Proof of lemma 2.4. Using
n

∑
i=1

Tn;ij = 0, ∀j, (A.5)

we can verify that

n

∑
i=1

M̂ij =
n

∑
i=1

(Tn M)ij =
n

∑
i,k=1

Tn;ik Mkj =
n

∑
k=1

Mkj

n

∑
i=1

Tn;ik︸ ︷︷ ︸
0

= 0. (A.6)

�

A.4 Trivial Fixed Point of the Entropy Barrier Function

Lemma A.1
The minimization problem

min
M∈Rn×n

+

F(M) :=
n

∑
i,j=1

Mij log
(

Mij
)

subject to
n

∑
i=1

Mij = 1, ∀j

n

∑
j=1

Mij = 1, ∀i

has the unique minimum Mij = 1
n ∀i, j.

Proof. Since F is strictly convex on Rn×n
+ and the constraints are convex too, F has a

unique minimum. The corresponding Lagrange function is defined as

L(M, µ, ν) :=
n

∑
i,j=1

Mij log
(

Mij
)

+
n

∑
i=1

µi

[
n

∑
j=1

Mij − 1

]
+

n

∑
j=1

νj

[
n

∑
i=1

Mij − 1

]
.

When we evaluate the stationary conditions of L, we receive

log
(

Mij
)

+ 1 + µi + νj = 0, ∀i, j.

After substituting the above term into the stationary condition of the row sum con-
straints, we obtain

n

∑
i=1

Mij =
n

∑
i=1

exp
(
−1− µi − νj

)
= exp

(
−1− νj

) n

∑
i=1

exp (−µi) = 1, ∀j.

It follows that all νj are equal. Making the analog argument for the column sums reveals
that the µi are equal. The proposition immediately follows.

�

71



PROOFS AND DETAILS

A.5 Bound on Lagrange Parameter Vector

Proof of lemma 2.8. According to the derivation of the soft-assign QAP algorithm, the
iterative update scheme from equation (2.38) can be rewritten as

M(r+1)
ij = uivjW

(r)
ij , ∀i, j. (A.7)

Using the exact satisfaction of the column sum constraint, we receive that

∑
i

M(r+1)
ij = ∑

i
uivjW

(r)
ij = 1, ∀j (A.8)

⇒ vj =
1

∑i uiW
(r)
ij

, ∀j. (A.9)

Substituting this into equation (A.7) leads to

M(r+1)
ij =

uiW
(r)
ij

∑k ukW(r)
kj

=
1

1 + ∑k 6=i
ukW(r)

kj

uiW
(r)
ij

≤ 1

1 + minj ∑k 6=i
ukW(r)

kj

uiW
(r)
ij

, ∀i, j. (A.10)

From the approximately satisfied row sum constraint |∑j M(r+1)
ij − 1| < ε, ∀i, we obtain

that
1− ε ≤∑

j
M(r+1)

ij ≤ n

1 + minj ∑k 6=i
ukW(r)

kj

uiW
(r)
ij

, ∀i. (A.11)

Let us rearrange this to

min
j

∑
k 6=i

ukW(r)
kj

uiW
(r)
ij

≤ n− 1 + ε

1− ε
, ∀i, (A.12)

which is also valid for each of the summands on the left. Moreover, for k = i it is valid, if
n ≥ 2 > 2 · (1− ε), which is true for every reasonable case. Thus,

min
j

ukW(r)
kj

uiW
(r)
ij

≤ n− 1 + ε

1− ε
, ∀i, k (A.13)

⇒ uk

ui
≤ max

j

W(r)
ij

W(r)
kj

· n− 1 + ε

1− ε
, ∀i, k (A.14)

⇒ max
i,k

uk

ui
≤ max

i,j,k

W(r)
ij

W(r)
kj

· n− 1 + ε

1− ε
. (A.15)

From Sinkhorn’s theorem 2.1, we know that the scaling coefficients ui and vj are unique
up to a factor. We exploit this property by requiring that Πiui = 1. From that, we can
conclude that

maxi ui

maxi
1
ui

}
≤ max

i,j,k

W(r)
ij

W(r)
kj

· n− 1 + ε

1− ε
. (A.16)
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Taking the logarithm on both sides and multiplying with 1
β gives

maxi

(
−µ

(r+1)
i

)
maxi µ

(r+1)
i

}
≤max

i,p,k

(
∑
j,l

C(γ)
pj;kl M

(r)
jl −∑

j,l
C(γ)

ij;kl M
(r)
jl + Bpk − Bik

)

+
1
β

log
n− 1 + ε

1− ε
.

(A.17)

If we exchange maxi,p,k and ∑j,l , this makes the right side larger. Thus, we obtain that:

max
i
|µ(r+1)

i | ≤∑
j,l

[
max
i,p,k

(
C(γ)

pj;kl − C(γ)
ij;kl

)
M(r)

jl

]
+ max

i,p,k

(
Bpk − Bik

)
+

1
β

log
n− 1 + ε

1− ε

(A.18)

≤∑
l

[
max
i,j,p,k

(
C(γ)

pj;kl − C(γ)
ij;kl

)
∑

j
M(r)

jl︸ ︷︷ ︸
=1

]
+ max

i,p,k

(
Bpk − Bik

)
+

1
β

log
n− 1 + ε

1− ε
.

(A.19)

Because of exact column sum constraint satisfaction, we finally conclude that

max
i
|µ(r+1)

i | ≤∑
l

max
i,j,p,k

(
C(γ)

pj;kl − C(γ)
ij;kl

)
+ max

i,p,k

(
Bpk − Bik

)
+

1
β

log
n− 1 + ε

1− ε
. (A.20)
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A.6 Performance on QAPLIB Instances

Name feas. solution w/o 2opt w/ 2opt β0 βr β f γ rr sr

Chr12a 9552 14406 9916 0.5 1.15 40.0 0.25 1 1
Chr12b 9742 13888 9742 0.5 1.075 20.0 0 1 2.5
Chr12c 11156 15406 11974 0.5 1.15 40.0 0.25 1 1
Chr15a 9896 12900 10976 0.5 1.075 13.3 0.25 1 1
Chr15b 7990 15776 8640 0.5 1.15 40.0 0.5 1 1
Chr15c 9504 16528 11352 0.5 1.05 20.0 0 1 1
Chr18a 11098 20744 12642 0.5 1.075 20.0 0.25 1 1
Chr18b 1534 1764 1560 0.5 1.15 40.0 0 1 1
Chr20a 2192 3176 2596 0.5 1.075 13.3 0 2.5 1
Chr20b 2298 3628 2670 0.5 1.025 40.0 0 1 1
Chr20c 14142 45126 16762 0.5 1.025 13.3 0.5 2.5 1
Chr22a 6156 8124 6602 0.5 1.15 13.3 0.25 2.5 1
Chr22b 6194 10004 6636 0.5 1.15 40.0 0.25 2.5 1
Chr25a 3796 8256 4574 0.5 1.075 20.0 0.25 1 1
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Name feas. solution w/o 2opt w/ 2opt β0 βr β f γ rr sr

Els19 17212548 25366272 20265368 0.5 1.15 20.0 0.5 1 2.5

Esc16a 68 72 68 0.5 1.15 20.0 0 2.5 2.5
Esc16b 292 292 292 0.5 1.15 40.0 0 1 1
Esc16c 160 164 160 0.5 1.15 40.0 0 1 2.5
Esc16d 16 18 16 0.5 1.15 40.0 0 1 1
Esc16e 28 32 28 0.5 1.15 40.0 0 2.5 2.5
Esc16g 26 30 26 0.5 1.15 40.0 0 1 2.5
Esc16h 996 996 996 0.5 1.15 40.0 0 1 1
Esc16i 14 14 14 0.5 1.15 40.0 0 1 1
Esc16j 8 14 8 0.5 1.15 40.0 0 1 1
Esc32a 130∗ 152 134 0.5 1.025 20.0 0 1 1
Esc32b 168∗ 192 184 0.5 1.15 13.3 0 2.5 2.5
Esc32c 642∗ 646 642 0.5 1.15 40.0 0 1 1
Esc32d 200∗ 208 200 0.5 1.15 40.0 0 2.5 1
Esc32e 2 2 2 0.5 1.15 40.0 0 1 1
Esc32f 2 2 2 0.5 1.15 40.0 0 1 1
Esc32g 6∗ 6 6 0.5 1.15 40.0 0 1 1
Esc32h 438∗ 446 438 0.5 1.15 13.3 0.75 1 1
Esc64a 116∗ 116 116 0.5 1.15 40.0 0 1 1
Esc128 64∗ 116 70 0.5 1.05 20.0 0.25 1 1

Had12 1652 1778 1660 0.5 1.15 20.0 0 1 1
Had14 2724 2756 2724 0.5 1.05 20.0 0.25 2.5 1
Had16 3720 4028 3720 0.5 1.15 40.0 0.25 1 1
Had18 5358 5702 5368 0.5 1.15 20.0 0.25 1 1
Had20 6922 7258 6934 0.5 1.15 20.0 0.25 1 1

Kra30a 88900∗ 94350 88900 0.5 1.15 13.3 0 2.5 1
Kra30b 91420∗ 107320 92550 0.5 1.15 20.0 0 2.5 2.5

Nug12 578 640 578 0.5 1.15 13.3 0 2.5 1
Nug14 1014 1152 1016 0.5 1.05 13.3 0 1 1
Nug15 1150 1238 1160 0.5 1.075 20.0 0 1 2.5
Nug16a 1610 1800 1638 0.5 1.15 20.0 0.25 2.5 1
Nug16b 1240 1434 1264 0.5 1.15 20.0 0 2.5 2.5
Nug17 1732 1844 1748 0.5 1.075 40.0 0.25 2.5 1
Nug18 1930 2132 1938 0.5 1.025 20.0 0 1 1
Nug20 2570 2848 2596 0.5 1.05 13.3 0 1 2.5
Nug21 2438 2672 2450 0.5 1.025 13.3 0 1 1
Nug22 3596 3778 3596 0.5 1.05 13.3 0.75 1 1
Nug24 3488∗ 3920 3490 0.5 1.025 20.0 0.25 2.5 1
Nug25 3744∗ 4074 3754 0.5 1.05 13.3 0 2.5 2.5
Nug30 6124∗ 6676 6186 0.5 1.05 20.0 0.25 2.5 1

Rou12 235528 257800 238134 0.5 1.15 20.0 0 1 1
Rou15 354210 394248 359748 0.5 1.15 40.0 0 2.5 1
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Rou20 725522 828062 740860 0.5 1.15 40.0 0 1 1

Scr12 31410 38164 31410 0.5 1.15 13.3 0 1 1
Scr15 51140 65632 51140 0.5 1.15 13.3 0 1 2.5
Scr20 110030 129354 111822 0.5 1.05 20.0 0 1 2.5

Sko42 15812∗ 18716 16222 0.5 1.05 20.0 0.25 1 1
Sko49 23386∗ 26690 23828 0.5 1.05 20.0 0 1 1
Sko56 34458∗ 39616 35200 0.5 1.05 20.0 0.25 1 1
Sko64 48498∗ 55408 49342 0.5 1.075 20.0 0 1 1
Sko72 66256∗ 74212 67222 0.5 1.075 20.0 0 1 1
Sko81 90998∗ 100562 92494 0.5 1.075 20.0 0 1 1
Sko90 115534∗ 128226 117176 0.5 1.05 20.0 0.25 1 1
Sko100a 152002∗ 167464 154302 0.5 1.05 20.0 0.5 1 1
Sko100b 153890∗ 170048 155850 0.5 1.05 20.0 0.5 1 1
Sko100c 147862∗ 164268 150514 0.5 1.05 20.0 0.5 1 1
Sko100d 149576∗ 162574 151788 0.5 1.05 20.0 0.25 1 1
Sko100e 149150∗ 164822 151210 0.5 1.05 20.0 0.25 1 1
Sko100f 149036∗ 164138 151308 0.5 1.05 20.0 0.25 1 1

Ste36a 9526∗ 11140 9804 0.5 1.05 40.0 0.25 1 1
Ste36b 15852∗ 19720 16248 0.5 1.025 13.3 0.25 2.5 1
Ste36c 823911?∗ 9630080 8393650 0.5 1.025 40.0 0 1 1

Tai12a 224416 245006 230704 0.5 1.025 20.0 0.25 1 1
Tai12b 39464925 50996318 39900385 0.5 1.15 13.3 0.25 1 1
Tai15a 388214 424986 393146 0.5 1.075 13.3 0.5 1 1
Tai15b 51765268 494800943 51969367 0.5 1.15 20.0 0.25 1 1
Tai17a 491812 546228 504468 0.5 1.15 20.0 0 1 1
Tai20a 703482 806858 728078 0.5 1.15 40.0 0.25 1 2.5
Tai20b 122455319∗ 140696443 123738722 0.5 1.15 40.0 0 1 1
Tai25a 1167256∗ 1360666 1205477 0.5 1.075 40.0 0 1 1
Tai25b 344355646∗ 483347219 346705166 0.5 1.15 40.0 0.25 1 1
Tai30a 1818146∗ 2052728 1875350 0.5 1.075 40.0 0.5 1 1
Tai30b 637117113∗ 834251995 639170392 0.5 1.05 40.0 0 1 1
Tai35a 2422002∗ 2787994 2534388 0.5 1.15 40.0 0 1 1
Tai35b 283315445 348651385 285328883 0.5 1.025 40.0 0 1 1
Tai40a 3139370∗ 3512334 3256832 0.5 1.15 13.3 0 1 1
Tai40b 637250948∗ 827700540 640223865 0.5 1.15 40.0 0 1 2.5
Tai50a 4941410∗ 5723066 5172662 0.5 1.05 20.0 0 1 1
Tai50b 458821517∗ 567843961 484635218 0.5 1.05 20.0 0.25 1 1
Tai60a 7208572∗ 8310636 7498004 0.5 1.05 20.0 0 1 1
Tai60b 608215054∗ 821580716 626873523 0.5 1.05 20.0 0.5 1 1
Tai64c 1855928∗ 5893540 1864686 0.5 1.05 20.0 0 1 1
Tai80a 13557864∗ 15385348 13990144 0.5 1.05 20.0 0.25 1 1
Tai80b 818415043∗ 1057927047 840600327 0.5 1.075 20.0 0 1 1
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Tai100a 21125314∗ 23782192 21755244 0.5 1.05 20.0 0.5 1 1
Tai100b 1185996137∗ 1420942964 1212014719 0.5 1.05 20.0 0.5 1 1
Tai150b 499348972∗ 609689786 514934358 0.5 1.05 20.0 0.5 1 1

Tho30 149936∗ 161054 151896 0.5 1.025 13.3 0.5 1 1
Tho40 240516∗ 256284 243416 0.5 1.075 40.0 0.25 1 2.5
Tho150 8134030∗ 9148466 8275938 0.5 1.05 20.0 0.5 1 1

Wil50 48816∗ 53164 49498 0.5 1.05 20.0 0.25 1 1
Wil100 273038∗ 290534 274458 0.5 1.05 20.0 0.5 1 1
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