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Abstract

We introduce a recently published convex relaxation approach for the quadratic as-
signment problem to the field of computer vision. Due to convexity, a favourable prop-
erty of this approach is the absence of any tuning parameters and the computation of
high—quality combinatorial solutions by solving a mathematically simple optimization
problem. Furthermore, the relaxation step always computes a tight lower bound of the
objective function and thus can additionally be used as an efficient subroutine of an exact
search algorithm.

We report the results of both established benchmark experiments from combinato-
rial mathematics and random ground-truth experiments using computer-generated graphs.
For comparison, a recently published deterministic annealing approach is investigated as
well. Both approaches show similarly good performance. In contrast to the convex ap-
proach, however, the annealing approach yields no problem relaxation, and four parame-
ters have to be tuned by hand for the annealing algorithm to become competitive.

Keywords: Quadratic assignment, weighted graph matching, combinatorial optimization,
convex programming, object recognition

1 Introduction

1.1 Motivation

Visual object recognition is a central problem of computer vision research. A key question
in this context is how to represent objects for the purpose of recognition by a computer vi-
sion system. Approaches range from view-based to 3D model-based, from object-centered
to viewer-centered representations [1], each of which may have advantages under constraints
related to specific applications. Psychophysical findings however provide evidence for view-
based object representations [2] in human vision, and so we will focus on this representation
in this paper.



Figure 1: Image features and binary relations computed for an object view using the FEX—
system (cf. [3] and http://www.ipb.uni-bonn.de/ipb/projects/fex/fex.html). The underlying
graph has |V'| = 38 nodes.

A common and powerful structure for representing object views is to define a set of
local image features V' along with pairwise relations £ C V x V (spatial proximity and
(dis)similarity measure) in terms of a weight function w : £ — R, , that is an undirected
weighted graph G = (V, E) (see Figure 1). Accordingly, a core routine of any recogni-
tion system is to compare graphs in different images, or to match graphs against prototypical
graphs in some object database.

Finding a good match between two graphs G, G' amounts to compute a permutation of the
vertices of one graph so as to become similar to the other one (cf. section 2). It is well-known
that this quadratic assignment problem is NP-hard [4] and cannot be solved to optimality even
for moderately sized problem instances. For the graph shown in Figure 1, for instance, about
10* possible permutations of its vertices exist.

The task of developing good matching algorithms amounts to make a compromise between
two contradictory requirements: Firstly, a high-quality solution close to the (unknown) global
optimum should be efficiently computable in polynomial time. Secondly, since the matching
algorithm is only a particular module of a computer vision system, there should be no need for
manual interaction (selection of a starting point or tuning parameters) in order to obtain good
performance. It seems to us that this latter algorithmic aspect has received less attention in
the computer vision literature than the former one. This motivated us to look for an approach
satisfying both requirements.

1.2 Related Work

The quadratic assignment problem is a classical problem in the field of combinatorial opti-
mization which is very general in the sense that several well-known problems, for example



the traveling salesman problem, are special cases of it. For a comprehensive review of the
quadratic assignment problem we refer to [5].
Classical approaches to the quadratic assignment problem include

— linearizations [6, 7] which can be efficiently solved in polynomial time at the cost of a
considerably larger number of variables,

— the use of exact search algorithms, like the cutting plane method [8] or branch-and-
bound [9], which are based on lower bounds [10, 6] of the objective function but can
only be applied to small problem instances, or

— heuristic search algorithms like tabu search, simulated annealing, or genetic algorithms
[11].

A separate class of approaches is formed by relaxations of the quadratic assignment problem.
Typically, these approaches aim at computing a lower bound of the objective function based on
eigenvalue problems [12, 13, 5]. Recently, an convex relaxation approach has been proposed
[14] which can be used to compute both a lower bound and the corresponding approximate
minimizer. A favorable property due to the convexity of this approach is that the relaxed
solution can numerically be computed without the need to select good starting points and
tuning parameter values. This will be studied in more detail below.

Another important approach to the quadratic assignment problem is based on the deter-
ministic annealing strategy. This approach has been extensively investigated in the neural-
network literature [15, 16, 17, 18, 19, 20, 21, 22]. In the context of image segmentation,
piecewise-smooth restoration and clustering, deterministic annealing is well-known in the
computer vision literature as well [23,24,25,26,27,28]. A favorable feature of deterministic
annealing is that this strategy can be derived in a theoretically sound way using the maximum
entropy principle (e.g., [27]). On the other hand, an obvious disadvantage from the viewpoint
of algorithm design are the complex bifurcation phenomena encountered when lowering the
annealing parameter [29]. To the best of our knowledge, no control strategy is known which
guarantees to reach a “good” local minimum. While excellent experimental results have been
reported using deterministic annealing, the dependence of these results on various tuning pa-
rameters apparently has not received much attention in the literature. In view of this important
aspect we present a thorough comparison of a deterministic annealing approach tailored to the
quadratic assignment problem [20, 22] with a convex programming approach [14].

Further important work on the graph—matching problem includes alternative algorithmic
approaches like probabilistic relaxation [30], genetic search [31], error—correcting matching
[32] or two—step iterative approaches [33], and also specialized work like, for example, si-
multaneous estimation of transformation geometry [34], or matching trees in terms of the
maximum clique of the association graph [35]. A comparison of this variety of approaches is
beyond the scope of this paper. We also do not discuss variations of the optimization criterion
(see, e.g., [30,36]), nor do we investigate the task to determine the weight function w in some



optimal way. Rather, by focusing on the optimization problem, we wish to emphasize the
advantages of parameter—free convex relaxation in the context of graph—matching and to re-
veal its performance in comparison to recent approaches which are based on the well-known
deterministic annealing framework.

1.3 Contribution

Our work contributes under the aspects relaxation, algorithm design and performance evalu-
ation.

Relaxation has a context—dependent meaning. In this paper, relaxation refers to the strategy of
making a combinatorial problem computationally tractable by keeping exactly the objective
criterion with respect to feasible combinatorial solutions but weakening the combinatorial
constraints. Concerning the quadratic assignment problem, a typical example is to optimize
over the orthogonal set of matrices instead of the set of permutation matrices, possibly subject
to further constraints like requiring non—negative entries or fixing row and column sums.

Solving (approximately) a combinatorial problem by relaxation has several advantages.
Firstly, it is mathematically comprehensible where and how approximations are introduced in
order to solve the optimization problem. By contrast, many other approaches are based on
algorithmic modifications, making a theoretical understanding and comparison more difficult.
Secondly, relaxed problem formulations compute a lower bound of the objective function,
because weakening the constraints gives more degrees of freedom for minimization. As a
consequence, different problem relaxations can be ranked based on the lower bound they
compute: The larger the lower bound, the better the relaxation. Thirdly, relaxations can be
used either to directly compute approximate solutions to the original combinatorial problem,
or as subroutines in exact branch-and-bound search algorithms. In the latter case the tightness
of the lower bound also largely determines the overall performance. Due to these advantages,
this paper focuses on relaxations of the quadratic assignment problem.

Algorithm design. A common problem of many approaches concerns the selection of tun-
ing parameters in order to obtain good performance. Concerning the quadratic assignment
problem, a representative example — the deterministic annealing strategy — will be examined
in more detail below. In this context, convex optimization approaches provide an attractive
alternative, because the global optimum exists under mild conditions and can be computed by
established numerical algorithms in polynomial time [37] without any additional parameters.

Performance evaluation. A widely—used collection of difficult, real-life benchmark prob-
lems exists in the field of combinatorial optimization [38], which has become a standard
during the last years. Apparently, this database has not been used in the computer vision liter-
ature so far in order to evaluate approaches to the weighted graph matching problem. Besides
extensive random ground—truth experiments, our performance evaluation was carried out for
problem instances of this database.



14 Organisation of the Paper

After stating the problem formally in section 2, we present a hierarchy of relaxations in sec-
tion 3, the most strongest one being a convex relaxation. For comparison, we sketch two
alternative approaches from the literature in section 4, a simple but fast approach based on
eigenvalue decomposition, and a more sophisticated deterministic annealing strategy. In or-
der to stress the difference to these non—convex approaches, various aspects of the convex
relaxation approach are visualized for a toy example in section 5. In section 6, the results of
numerous experiments for both real-life benchmarks from the field of combinatorial optimiza-
tion and for ground-truth experiments based on computer-generated graphs are summarized.
We conclude and indicate further work in section 7.

2 Problem Statement and Definitions

2.1 Notation

We will use the following notation:

X7 transpose of the matrix X

1, n X n unit matrix

O set of orthogonal matrices X ,i.e. X X =1,

& set of matrices with unit row and column sums

N set of non-negative matrices

IT set of permutation matrices IT€ ONE NN

e vectorof allones: ¢; =1, 21=1,...,n

Tr[X] trace of the matrix X

o scalar product of two matrices X,Y: X ¢ Y = Tr[X Y]

|X||  Frobenius norm of the matrix X: || X | = Tr[X T X]'/2
vec[X] vector obtained by stacking the columns of the matrix X
® Kronecker product

A(X)  vector of the eigenvalues of the matrix X

r(X)  vector of the row sums of the matrix X

s(X)  sum of all elements of the matrix X

dij Kronecker delta: 6;; = 1 if ¢ = 7, and 0 otherwise

2.2 Problem Statement

In this paper, we consider undirected graphs G = (V, E, w) with nodes V' = {1,...,n} and
edges E C V x V. The weight function w : E — R{ typically encodes a similarity measure
with respect to pairs of features (i, j). This measure along with the structure of the graph is
represented by the adjacency matrix Ag: (Ag)ij = wij, 4,5 = 1,...,n. Since w;; = wy;,
adjacency matrices are symmetric: A}, = Ag.



Let G = (Vg, Eg,wg) and H = (Vy, Ey,wy) denote two given graphs. In order to
match these two graphs, we want to compute a permutation ¢ : Vi — Vi of the nodes of G
such that the following distance measure is minimized:

n

> (wasey) — wini)’ (1)

1,j=1

Representing the permutation ¢ by a permutation matrix X & II, this cost function takes the
following form [39] in terms of the adjacency matrices of G and H:

F(X) =] XAcXT — Ayl)? (2)

For isomorphic graphs exists a permutation matrix such that the minimum value f(X) = 0 of
the objective function is attained. For features Vi, Vi supplied by an image pre—processing
stage, it is unlikely that G and H are isomorphic. In this case we define as the best match
the permutation matrix X* which minimizes f over II. Thus, the graph matching problem
formally reads:

fIX7) = min | XA X" — Ayl 3)

The minimization problem (3) has a close relationship to the quadratic assignment prob-
lem (QAP) in combinatorial mathematics (for a survey, see [5]):
min T(fAXBX " +CX ] 4
Xell

Provided that the graphs have the same number of nodes, this relationship can be seen by
reformulating the graph matching objective function as follows:

fX) = XAcXT — Ag|®
= Tr[AgAL] + Tr[AgA}] — 2Ti[Ag X ALXT] (5)

Dropping the constant terms C = Tr[AgA/] and Cyy = Tr[Ay A};], we recognize the graph
matching problem (3) as a special case of the quadratic assignment problem (4) with A = Ap,
B = —Ag and C = 0. Throughout the remainder of this paper, we can therefore consider the
following optimization problem:
. TyT

(QAP) min Tr[AXB X '] (6)
Remark 1 We note that (1) corresponds to (6) only if |Vg| = |Vy| = n. In this paper,
we make this simplifying assumption (as did Umeyama [39], for instance) in order to as-
sess the techniques which have been developed for the quadratic assignment problem for the
weighted graph matching problem in computer vision. The issue of extending the techniques
to subgraph matching will be taken up in section 7.



3 Relaxations and Lower Bounds

In this section, we consider various relaxations of problem (6). We will see that a ranking of
these approaches can be obtained by virtue of the corresponding lower bounds.

3.1 Orthogonal Relaxation

Relaxing the set II to @ D II, Finke et al. [12] suggested the so—called Eigenvalue Bound
(EVB) which gives a lower bound for the minimization problem (6):

(EVB)  min Tr{AXBTX ] = (M(A), \(B))_ (7)

Here, (A(A), A\(B))_ denotes the so—called minimal scalar product. This is the scalar product
of the vectors A\(A) and \(B) containing the eigenvalues of the adjacency matrices A and B
ordered as follows: \j(A) < Ay(A) < --- < A\y(A) and \(B) > \y(B) > --- > A\ (B).
The matrix X for which the bound (EVB) is attained can be calculated as well. If U,V € O
diagonalize the adjacency matrices A and B, respectively, and this columns are arranged
according to the order of the eigenvalues mentioned above, then X = UV T. It turned out that
in many cases this relaxation yields a bound for the minimization problem (6) which is too
weak to be useful in practice.

3.2 Projected Eigenvalue Bound

Hadley et al. [13] improved the lower bound (7) by taking into account the constraint set £ in
addition to O. To this end, they parameterized matrices X € ONE basedon (n—1) x (n—1)
orthogonal matrices X € O and the relationship

X:VXVT+1E,
n

where £ = ee' and the n — 1 columns of the n x (n — 1) matrix V' form a basis of the
subspace orthogonal to the vector e. Conversely, for any (n — 1) x (n — 1) matrix X € O we
have X = VXV + 1E € ONE. Then x (n — 1) matrix V can be calculated using the
following scheme:

a a - a a
1+b b --- b b ] 1 1
= : SN : with a:—ﬁ and b:_n+\/ﬁ'
b b - b 140D

Using this parameterization, the objective function can be rearranged as follows:

TrAXB'X "] = Ti[AXB'X "] + Tr[DX] - C} , (8)



where A = VTAV,B =V 'BV,D = 2r(A)r(B)" and C, = =5s(A)s(B). The authors
of [13] suggested to optimize the first two terms on the right hand side of (8) separately, the
first one over X € O(n — 1), and the second one over X € II. The latter problem amounts to
solve the linear assignment problem

LAP(D) = r)r(lin Tr[DX], C))

(S

which can be solved using any linear programming solver. As a result, the Projected Eigen-
value Bound as a lower bound for the minimization problem (6) is obtained:

~

(PEVB)  (MA),\(B))_ +LAP(D) — C, (10)

However, a major drawback of this bound is that due to separately minimizing the two
terms in (8), a corresponding minimizing matrix X cannot be computed in general. The next
subsection shows how one can overcome this drawback by convex relaxation and even achieve
a better lower bound than (10).

3.3 Convex Relaxation

Following the work of Anstreicher, Brixius and Wolkowicz [40, 14], we focus on a convex
relaxation of the minimization problem (6) in this section. Besides the general arguments
discussed in section 1.1, the main motivation for this approach is its ability to compute both
a tight lower bound and the corresponding matrix X where this bound is attained. In general
this is not possible for the bound (10).
As a starting point reconsider the minimization of the first term of the right hand side of
equation (8) over the set O(n — 1):
min Tr[AXB'X]
X
st. XXT =1 (11)

X'X=1
The Lagrangian dual of this problem reads[40]:
max Tr[S + T
S,

S.t.

A A

=(BRA) —(I®S)—(T®I) =0 (12)
=S, T=T"

CQ> @>

Here Q > 0 means that Q has to be positive semidefinite. The optimal solution for (11),
according to (7), is
min  TAXB X T] = (\(A), \(B))_ (13)

Xeo(n-1)



The duality gap between the optimal solutions of (11) and (12) is zero since interior points
exist for both problems (see, e.g., [37]). Hence, the optimal values are the same:

max Tr[S + 7] = (\(A), \(B)) - (14)
ST
The objective function in (11) can be reformulated as follows:

A A A A~

Tr[AXBTX ] _Vec( ) (B ® fl)vec(f() = Tr[(B ® fl)vec(f()vec(f()T]
—(BoA)eY, (15)

where
Y = vec(X)vec(X)"

For arbitrary matrices Sand T and X € O the following equations hold:
Te[S] =Tr[SI] = Te[SX " X] = Te[XSX | = Th[IXSX | = (S®@ 1) e Y
T[T =TT =TT XIX |=(IQT)eY

Using this, a positive semidefinite form containing () from (12) can be introduced into the
objective function Tr[flf( BTX T], if we assume that S and T are a feasible solution for the
dual problem (12):

TIAXB'X"|= (B A) oY = (B A) e Y +Tr[S]| — (S®@I)eY +Tt[T] —(IQT)eY
=TS+ T]+[(BoA) - (I085) — (T®)]eY =TilS+T]+QeY
= Tr[S + T + vec(X) T Qvec(X)

>

Choosing S and 7 as the optimal solution to (12) we obtain with (14):
TIAXB X ] = (A(A), \(B))_ + vec(X) " Qvec(X)

Finally, substituting this expression as well as all the non—projected variables X =VTXV
etc. into (8), we obtain after an elementary but tedious calculation the Quadratic Programming
Bound:

(QPB)  TiAXB X' = (A\(A), \(B))_ + vec(X) Qvec(X) (16)

A comparison with (8) shows that now we have just a single term on the right hand side
comprising the unknown matrix X and (16) allows the computation of both a lower bound and
the corresponding minimizing matrix X . For the linear term in (8), minimizing over the set
IT (cf. (9)) is equivalent to minimizing over £ N A/ . Accordingly, Anstreicher and Brixius [14]
suggest to minimize the quadratic form in (16) over £ N A, i.e. to solve the convex quadratic
problem:

min  vec(X) " Qvec(X)
st. Xe=XTe=ce (17)
X>0

9



Here X > 0 means that all entries of the matrix X have to be non-negative. The following
relationship between the bounds (7), (10) and (16) holds[14]:

(EVB) < (PEVB) < (QPB) < (QAP) :gleigTr[AXBTXT] (18)

Consequently the bound (16) computed by convex programming cannot perform worse than
the other bounds. The quality of the corresponding solution X in comparison to other ap-
proaches (see next section) will be assessed in section 6.

3.4 Computing a Combinatorial Solution

To obtain a permutation matrix P € II from the non-integer solution X € £ NN to (17), a
good permutation matrix close to X has to be found. A simple way of doing this is to solve
the following linear programming problem:

_ T
Py = arg max Tr[X  P] (19)

In this paper, we use a slightly different idea which takes into account that in most cases a lin-
ear approximation of the original problem leads to an improvement of the obtained objective
function. To this end, we add an unknown matrix A to the relaxed solution X so as to give a

permutation matrix:
P=(X+A)ell

Next, we expand the objective function Tr[APBT PT] around X up to linear terms with re-
spect to A:

Tt[APBTPT] =Ti[A(X + A)BT(X +A)T]

TrAXBTX "] + Tr[AXBTAT] + Tr[AABTX 7] + Tr[AABTAT]
THAXBTX ]+ Tr{AXBTAT] + Tr{AABT X T]

= -Tri[AXB'X "]+ Tr[AXB"P"] + Tt[B" X " AP]

= —Tr[AXB'X "]+ 2Tr[BT X " AP]

Q

As a result, we have to minimize the term Tr[B " X " AP] to obtain the combinatorial solution
P from the relaxed solution X. This problem can again be solved by linear programming:

P, = argminTr[B' X " AP)]
Pell
To see the difference to (19), we put M = —B" X " A and finally have:
P, = arg max Tr[MP] . (20)

3.5 The 2opt Post-Processing Heuristics

A simple heuristics called 2opt was proposed in [22] in order to further improve combinatorial
solutions computed by more expensive methods. This greedy strategy iteratively exchanges
pairs of assignments in the permutation until no further improvement is possible.

10



4 Non-Convex Approaches

In this section we briefly sketch two approaches that we used for comparison with the con-
vex relaxation approach of section 3.3. The first one was proposed by Umeyama [39] and
resembles the spectral relaxation approach of [12]. Furthermore, we consider the determinis-
tic annealing approaches [20] and [22] for which excellent performances are reported in the
literature.

4.1 The Approach by Umeyama

Based on the Eigenvalue Bound (7), Umeyama [39] proposed the following estimate for the
solution of (6):
Xyme = argmax Tr(X T U [V]T) . 1)
€

Here, U and V' diagonalize the adjacency matrices A and B, respectively, with the eigenvalues
sorted according to (EVB), and | - | denotes the matrix consisting of the absolute values taken
for each element. (21) is a linear assignment problem which can be efficiently solved by using
standard methods like linear programming.

4.2 Graduated Assignment

Gold and Rangarajan [20] and Ishii and Sato [22] independently developed a technique com-
monly referred to as graduated assignment or soft assign algorithm. The set of permutation
matrices II is replaced by the convex set D = £ NN of positive matrices with unit row and
column sums (doubly stochastic matrices). In contrast to previous mean-field annealing ap-
proaches, the graduated assignment algorithm enforces hard constraints on row and column
sums, making it usually superior to other deterministic annealing approaches.

The core of the algorithm is an iteration scheme, which computes an approximative so-
lution matrix X at each step of the decreasing annealing schedule. In our description 3 > 0
denotes the current annealing parameter; v is a fixed “self-amplification” parameter, which
enforces that the minimum on the set D is also in II. Denoting the iteration time step by the
superscript, the matrix X "*1) is calculated as follows (for 3 fixed):

k,l

The scaling coefficients g;, h; are computed so that X (r+1) is projected on the set D using
Sinkhorn’s algorithm [20] as inner loop:

y(r,2s—1) y(r,2s)
(r,2s) ij (r,2s4+1) ij
r2e) Y ey Yy (23)
) (r,2s—1) ) (r,2s)
k Yik Zk Yij

11



Stopping criteria based on convergence bounds or the number of iterations have to be estab-
lished for the inner projection loop and the iteration scheme. For more details, we refer the
reader to [20, 22].

Rangarajan et al. [21] showed that this scheme locally converges under mild assumptions.
Several studies revealed excellent experimental results. In our experiments, we improved the
obtained results with the local 2opt heuristics.

A drawback of the graduated assignment algorithm is that the selection of several “tuning”-
parameters is necessary to obtain optimal performance. An annealing schedule has to be set
up, which is usually described by three parameters: an initial temperature, the annealing rate,
and a final temperature or other stopping criterion [20]. There are theoretically motivated
methods that give a lower bound for reasonable initial temperatures based on an analysis of
the bifurcation structure of the problem [22]. Nevertheless, careful selection of the parameter
greater than this bound can improve the results. The self-amplification parameter also has a
lower bound that guarantees the above property that the minimizer of the objective function is
in II. An exhaustive parameter search for the annealing schedule, even below the theoretical
bound, may increase the performance. Finally, the stopping criteria also influence the quality
of the results. All parameters have in common that their optimal values vary for different
problem instances (cf. [22]).

S Convex Relaxation: An Illustrative Numerical Example

For the purpose of illustration, we apply the convex relaxation approach to a small graph
matching problem in this section .

5.1 A Small Graph Matching Problem

In order to graphically visualize the convex relaxation approach, we consider the two small
weighted graphs G and H shown in figure 2. Obviously, the best match corresponds to ex-
changing vertices 2 and 3 in either graph.

Figure 2: Two small sample graphs G and H to be matched

12



The adjacency matrices of the graphs G and H are:

0 0.56 0.92 0 099 0.22
Ac=1 056 0 0.12 Ap=1 099 0 0.02
092 0.12 0 0.22 0.02 0

In this example the objective function of the graph matching problem (3) attains the following
values for each of the six possible permutations:

1.370,3.077,2.01,3.365,0.613,0.261

Thus the optimum of this graph matching problem is

OPT = C + Cy +2min Tr{AXB'X "] ~ 0.261
€0

with A = Ay,B = —Ag,Cq = Tr[AgA/L] ~ 2.349 and Cyy = Tr[AgA)] =~ 2.058.

In the following, we visualize permutation matrices X by representing entries X;; = 1
graphically by black squares and X;; = 0 by white squares. Accordingly, the permutation
matrices which lead to the objective function values given above (in the same order) are de-

2= e~ . "=

The last permutation matrix represents an exchange of vertices 2 and 3 and thus corresponds
to the global optimum of this graph matching problem.

picted here:

5.2 Relaxations and Bounds

We calculate the bounds described in section 3 for the problem depicted in figure 2.

Orthogonal Relaxation

The eigenvalue bound leads to the following lower bound:
EVB = CG + CH + 2<)\(A), )\(B)>_ ~ 0.023

with Cg = Tr[AgAl] ~ 2.349, Cy = Tr[ApA};] ~ 2.058 and (A\(A), \(B))_ ~ —2.192.
This bound is attained for

0.999 0.041 0.002
X~ | —0.014 0.316 0.948
—0.038 0.948 —0.317

Due to the small size of our problem, this solution already indicates the optimum despite the
obvious weakness of the EVB-bound in general.

13



Projected Eigenvalue Bound

Using the Projected Eigenvalue Bound, we obtain the following lower bound for our small
graph matching problem:

PEVB = C¢; + Oy + 2[(\(A), \(B))_ + LAP(D) — Cy] ~ 0.181

where (A(A),\(B))_ ~ —0.985, LAP(D) ~ —2.003, C; ~ —0.875. Note that this bound
is much stronger than the EVB—bound. On the other hand, as mentioned in section 3.2, this
approach does not allow to compute a corresponding matrix X for which the PEVB-bound is
attained.

Quadratic Programming Bound

The Quadratic Programming Bound gives:

~

QPB = Cg + Oy + 2[(MA), \(B))_ + XrengigN vec(X) " Qvec(X)] ~ 0.215

Here the minimization of the quadratic term results in min x gy vec(X) TQvec(X) ~ —1.111
and the bound is attained for

0.747 0.000 0.253
X~ | 0.253 0.000 0.747
0.000 1.000 0.000

As predicted, this bound is superior to the PEVB-bound. So summarizing, for the numerical
example considered here the ranking (18) of these bounds reads:

EVB ~ 0.023 < PEVB =~ 0.181 < QPB ~ 0.215 < OPT ~ 0.261 (24)

5.3 Visualization

To illustrate how the convex relaxation approximates the original combinatorial problem, we
inspect graphically the original objective function

forig(X) =Cg + Oy + 2T AXBTX ]
along with its convex relaxation
Feonvea(X) = Ca + Cpr + 2[(MA), \(B))_ + vee(X) "Qvec(X)]

for a few one—dimensional paths X («) through the relaxed solution set defined by X € ENN.
It is well known (Birkhoff-von Neumann theorem) that this set is just the convex hull of the
original feasible set, i.e. the permutation matrices X € II. Hence, all paths

X(a)=aXo+(1—a)X;, a€]0,1]

14
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—— convex func. —— convex func. —— convex func.
3 [ | -——-- original func. - 3 R~ ---- original func. | ] 3 [ | -—--- original func.
—-— lower bound -7 DRI —-— lower bound —-— lower bound

25 1 25l 25

objective value
objective value
objective value

05 - B 05 - B 05 -

. . . . . . . . . . . . . . . . . . . . . . . . . .
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
ﬁ superpositionparameter o % % superpositionparameter o ﬁ ﬁ superpositionparameter o ﬁ

Figure 3: The original objective function and its convex relaxation along paths through the
relaxed solution set.

between extreme points X, X9 € II go through the interior relaxed solution set, and we can
graphically explore the two cost functions above by plotting their graphs over various paths.
Figures 3 and 4 show several paths and illustrate the following facts:

e At the end—points of all paths, the two cost functions coincide because the relaxed
approach does not change the original objective function at the original feasible set
(cf. Section 1.3).

e The original objective function is non convex in the relaxed solution set and thus ex-
hibits local minima. This is not the case for the objective function of the convex relax-
ation.

e The plot on the right hand side of Figure 4 illustrates how the lower bound is attained
by the convex relaxation approach. Furthermore, the point where this bound is attained
is close to the global optimum (the end—point on the right) due to the tightness of the
lower bound.

In summary, these Figures illustrate that the convex relaxation “feels” where the “good” min-
imum lies, and that a nearby point can be computed without any initialisation problem or
parameter tuning!

6 Experiments and Discussion

This section has two parts. In the first part we investigate the performance of the convex
optimization relaxation. To this end, we compare the corresponding lower bounds with the
combinatorial solutions of several benchmark problems from the QAPLIB—collection [38].
The QAPLIB is a public library of very difficult real-life quadratic assignment problems
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Figure 4: The original objective function and its convex relaxation along paths through the

relaxed solution set. On the right, the plot illustrates how the lower bound is attained at a point
close to the global optimum (end—point on the right).

which can be used to evaluate and to compare the performance of any quadratic assignment
approach. In the second part we present statistical results computed for a large set of randomly
generated graphs (including ground—truth).

Abbreviations

The following abbreviations are used within the tables of this section. f represents in all cases
the value calculated by the objective function (cf.(6))

f(X)=Ti[AXB'XT],

with an X € II. The subscript of f shows how and with which approach the X € II was

obtained.
fr value of the objective function (6) at the global optimum X* € II

EV B: the eigenvalue bound (7)
PEV B: the projected eigenvalue bound (10)
QPB: the quadratic programming bound (16)

fopp: value of the objective function in (6) using the permutation matrix
obtained with (19) from the QPB solution.

fé pp: Vvalue of the objective function in (6) using the permutation matrix
obtained with (20) from the QPB solution.

faa:  value of the objective function in (6) using the permutation matrix
obtained by the graduated assignment algorithm (22).

fume:  value of the objective function (6) using the permutation matrix
obtained by the approach from Umeyama (21)
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An additional “+"—sign (e.g.forp+, fé pp+s faat,fume) indicates that the 2opt—heuristics
was used as a post—processing step to further improve the permutation matrix found.

6.1 QAPLIB Benchmark Experiments

Quality of the Relaxations

The quality of the various relaxation approaches, namely the eigenvalue bound (E'V B), the
projected eigenvalue bound (P EV B) and the quadratic programming bound (() P B), can be
assessed by measuring how close these bounds are to the global optimum (see (18)).

Problem f EVB | PEVB QPB
chri2c 11156 | -127514 | -24375 | -22648
chrl5a 9896 | -190769 | -52468 | -48539
chrl5c 9504 | -186403 | -50295 | -47409
chr20b 2298 -30995 -8051 7728
chr22b 6194 66432 | 22126 | -20995
escl6b 292 230 250 250
roul2 235528 | -274122 | 200024 | 205461
roul’s 354210 | -424419 | 296705 | 303487
rou20 725522 | 739730 | 597045 | 607362
tai10a 135028 | -181950 | 112528 | 116260
tail2a 224416 | -284261 | 193124 | 199378
tail5a 388214 | -414351 | 325019 | 330205
tail7a 491812 | -496403 | 408910 | 415578
tai20a 703482 | -714901 | 575831 | 584942
tai30a 1818146 | -1505553 | 1500406 | 1517829
tai35a 2422002 | -2015233 | 1941622 | 1958998
taid0a 3139370 | -2559063 | 2484371 | 2506806

Table 1: Bounds computed for QAPLIB—problems.

Table 1 shows the results for problems drawn from the QAPLIB [38]. The first column
comprises labels indicating the problem and the number |V'| of vertices of a data set from
the QAPLIB. The second columns shows the value of the objective function at the global
optimum. The corresponding lower bounds computed by the relaxation approaches are listed
in the remaining columns.

Since zero is a trivial lower bound, a negative sign indicates that the relaxation is not tight.
This happens for most problems with the EV—bound which therefore can be considered not to
be useful, and for some problems with the other bounds as well (hence these problems seem
to be most difficult).

Furthermore, table 1 confirms the relationship (18), and that the convex relaxation ap-
proach gives the best lower bound.

Comparison to Spectral Decomposition and Graduated Assignment

We compare the combinatorial solutions obtained with the convex relaxation approach with
those computed with the graduated assignment approach [20, 22] and the spectral decompo-
sition approach by Umeyama [39]. Table 2 shows the results in the same way as table 1, but
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Problem f* fQPB fQPB+ fépB féPB‘i’ fGA fGA+ fUme fUme+
chrl2c 11156 20306 15860 27912 13088 19014 11186 40370 11798
chrl5a 9896 26132 14454 20640 13540 30370 11062 60986 17390
chrl5c 9504 29862 17342 19436 12754 23686 13342 76318 13338
chr20b 2298 6674 2858 7276 3832 6290 2650 10022 3294
chr22b 6194 9942 6848 8958 6902 9658 6732 13118 7418
escl6b 292 296 292 312 292 298 292 306 292
roul2 235528 278834 246712 266864 241802 273438 246282 295752 251848
roul5 354210 381016 371480 394192 374000 457908 359748 480352 384018
rou20 725522 804676 746636 795578 757270 840120 738618 905246 765872
tailOa 135028 165364 143260 154282 139524 168096 135828 189852 147838
tail2a 224416 263978 237200 246424 238902 263778 224416 294320 252044
tailSa 388214 455778 399732 432610 390782 451164 400328 483596 405442
tail7a 491812 550852 513170 545410 526518 589814 505856 620964 526814
tai20a 703482 799790 740696 752896 726038 871480 724188 915144 775456
tai30a 1818146 1996442 1883810 1979530 1872722 2077958 1886790 2213846 1875680
tai35a 2422002 | 2720986 | 2527684 | 2677688 | 2511800 | 2803456 | 2496524 | 2925390 | 2544536
tai40a 3139370 | 3529402 | 3243018 | 3411278 | 3277450 | 3668044 | 3249924 | 3727478 | 3282284

Table 2: Results of the QAPLIB benchmark experiments (see text).

now only combinatorial solutions are shown. A “4”-sign indicates that the 2opt-heuristics
was used as a post—processing step to improve the solution. The difference between fgpp and
fé pp 1s that linearization was used to “round” the relaxed convex programming solution to a
combinatorial solution in the latter case (see section 3.4).

The columns labeled with fi4 and fy,,. show the results obtained for the graduated as-
signment approach [20, 22] and for the approach by Umeyama [39]. It should be noted that
considerable care was taken to find out optimal parameter values for the graduated assignment
approach for each data set [42].

The following conclusions can be drawn from the results shown in table 2:

e The convex relaxation approach fqpp and the soft-assign approach f;4 have similarly
good performance, despite the fact that the latter approach is much more intricate from
the optimization point-of-view and involves a couple of tuning parameters which have
to be (and were) optimized by hand.

e The approach of Umeyama fy,,,. based on spectral decomposition is not as competitive.

e Using the simple 20pt greedy—strategy as a post—processing step significantly improves
the solution in most cases.

6.2 Random Ground-Truth Experiments

In this subsection we discuss our results obtained for two different ground-truth experiments.
In the first experiment we created many problem instances (6) by independently computing
two different random graphs with the same number of vertices. In the second experiment we
computed a large collection of random graphs along with slightly perturbed and randomly
permutated “copies” of these graphs.
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Random Graphs

In this experiment we created many problem instances (6) by independently computing two
different random graphs with the same number of vertices. The probability that an edge is
present in the underlying complete graph was about 0.3. Figure 5 shows an example in order
to visualize the edge—density of such graphs. The global optimum for (6) was computed
using an exact search algorithm. The global optimum was used to calculate the ratio of the
suboptimal objective value to the best objective value for each problem instance. Table 3
summarizes our results based on this ratio. It shows the statistics (mean, worst case and
the best case) for three experiments with different sizes of the graphs (n = 9,11,15). The
number of problem instances for each experiment is shown in angular brackets. The number of
correctly found matchings without/with the 2opt heuristics as post-processing step are shown
in round brackets. The following conclusions can be drawn from the results shown in table 3:

e The soft-assign approach performs somewhat better for these experiments than the con-
vex relaxation approach but the latter needs no tuning parameters which have to be
optimized by hand.

e With increasing problem size the performance decreases for all three approaches.
e The approach of Umeyama fi,,,. based on spectral decomposition is not as competitive.

e Using the simple 2opt greedy—strategy as a post—processing step significantly improves
the results.

fépB/f* fUme/f* fGA/f*
mean | WOrst case | best case mean | Worst case | best case mean | Worst case | best case
n=9 [128] (22/55) (7/29) (31/55)
0.88765 | 0.43810 1 0.638244 | 0.065173 1 948342 7756129 1
2opt 0.97130 | 0.79256 1 0.928304 | 0.753007 1 969914 .843046 1
n=11 [42] (3/10) 0/7) (7/10)
0.83043 | 0.56268 1 0.636159 | 0.295194 0.998591 940740 .8338586 1
2opt 0.95760 | 0.85043 1 0.933206 | 0.811326 1 958863 .8434407 1
n=15[99] 0/2) 0/1) 4/11)
0.78726 | 0.52307 0.938917 | 0.225983 | 0.131333 0.863508 916225 105164 1
2o0pt 0.92195 | 0.77956 1 0.890131 0.74688 1 95763 .820596 1

Table 3: Statistics of the results of random ground-truth experiments (see text).

Perturbed Graphs

In the second series of experiments we computed a large collection of random graphs along
with slightly perturbed and randomly permutated “copies” of these graphs. The weights of the
second graph were perturbed by a normally distributed factor with standard deviation o = 0.1
around 1. The results for this kind of experiments are shown in table 4 which has the same
structure as table 3. For larger problems (mor than 15 vertices) where computing the global
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Figure 5: A randomly generated graph with 15 vertices and a probability of about 0.3 for the
presence of an edge.

optimum was too expensive, we assumed the optimal permutation to be the inverse of the
random permutation matrix which was used to compute the second graph of each pair. In
some cases this was not true and hence a different permutation with a lower objective value
could be found by the algorithms. This explains why some of the quotients in table 4 have a
value greater than 1.

In summary, the statistics of our results shown in table 4 reveal that in almost every case
of these “low—level noise” experiments the optimal permutation was found by the quadratic

programming approach.

fépB/f* fUme/f* fGA/f*
mean | worst case | best case mean | worst case | best case mean | worst case | best case
n=9 [155] (154/155) (142/154) (144/151)
0.999996 0.999382 1 0.986481 0.463282 1 997206 .859380 1
2opt 1 1 1 0.999883 | 0.981862 1 998154 .859380 1
n=15 [183] (183/183) (163/175) (176/181)
1 1 1 0.974078 | 0.379189 1 998347 833787 1
2o0pt 1 1 1 0.993836 0.718871 1 998484 833787 1
n=20 [173] (173/173) (148/163) (167/171)
1 1 1 0.977225 0475711 1 998205 855257 1
2opt 1 1 1 0.991662 0.772512 1 998338 855257 1
n=25 [169] (169/169) (64/123) (126/143)
1.00001 1 1.00155 0.848105 | 0.216079 1 966097 491432 1.001550
2opt 1.00002 1 1.00155 0.960519 | 0.602629 1.00099 9748815 | .686842 1.001550

Table 4: Statistics of the results of perturbed graph experiments (see text).

20




7 Conclusion and Further Work

We showed that the convex programming approach is a competitive approach for finding
suboptimal solutions to the weighted graph-matching problem. We compared the convex
approach with both a recent deterministic annealing approach and an approach based on the
eigenvalue decomposition. The performance of the latter approach is worse whereas the deter-
ministic annealing approach performs similarly or slightly better, but uses parameters values
which were optimized by hand. The advantage of the convex approach is that no “tuning”
parameters have to be determined at all. Furthermore, in contrast with the deterministic an-
nealing approach, the convex approach provides a lower bound and thus can be used as a
subroutine within an exact search strategy like branch-and-bound. Our results show that it is
an attractive direction of research for solving relational matching problems in the context of
view-based object recognition.

Our further work will focus on the case of graphs with an unequal number of vertices:
|Va| # |V |. If this difference is small, our approach can be applied by filling up the smaller
graph with “virtual nodes”. In general, of course, this is not a satisfying way. The conse-
quence of different numbers of vertices is that the unknown permutation matrix X becomes
a matching matrix, and that either of the two constants C, C'y in the objective function (5)
changes to a term which depends on X, too. In our further work we will extend the approach
presented here to this more general case.
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