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Abstract

The accuracy of optical flow estimation algorithms has
been improving steadily as evidenced by results on the
Middlebury optical flow benchmark. The typical formula-
tion, however, has changed little since the work of Horn
and Schunck. We attempt to uncover what has made re-
cent advances possible through a thorough analysis of how
the objective function, the optimization method, and mod-
ern implementation practices influence accuracy. We dis-
cover that “classical” flow formulations perform surpris-
ingly well when combined with modern optimization and
implementation techniques. Moreover, we find that while
median filtering of intermediate flow fields during optimiza-
tion is a key to recent performance gains, it leads to higher
energy solutions. To understand the principles behind this
phenomenon, we derive a new objective that formalizes the
median filtering heuristic. This objective includes a non-
local term that robustly integrates flow estimates over large
spatial neighborhoods. By modifying this new term to in-
clude information about flow and image boundaries we de-
velop a method that ranks at the top of the Middlebury
benchmark.

1. Introduction
The field of optical flow estimation is making steady

progress as evidenced by the increasing accuracy of cur-
rent methods on the Middlebury optical flow benchmark
[6]. After nearly 30 years of research, these methods have
obtained an impressive level of reliability and accuracy
[33, 34, 35, 40]. But what has led to this progress? The
majority of today’s methods strongly resemble the original
formulation of Horn and Schunck (HS) [18]. They combine
a data term that assumes constancy of some image property
with a spatial term that models how the flow is expected
to vary across the image. An objective function combin-
ing these two terms is then optimized. Given that this basic
structure is unchanged since HS, what has enabled the per-
formance gains of modern approaches?

The paper has three parts. In the first, we perform an ex-
tensive study of current optical flow methods and models.

The most accurate methods on the Middlebury flow dataset
make different choices about how to model the objective
function, how to approximate this model to make it com-
putationally tractable, and how to optimize it. Since most
published methods change all of these properties at once,
it can be difficult to know which choices are most impor-
tant. To address this, we define a baseline algorithm that
is “classical”, in that it is a direct descendant of the original
HS formulation, and then systematically vary the model and
method using different techniques from the art. The results
are surprising. We find that only a small number of key
choices produce statistically significant improvements and
that they can be combined into a very simple method that
achieves accuracies near the state of the art. More impor-
tantly, our analysis reveals what makes current flow meth-
ods work so well.

Part two examines the principles behind this success. We
find that one algorithmic choice produces the most signifi-
cant improvements: applying a median filter to intermedi-
ate flow values during incremental estimation and warping
[33, 34]. While this heuristic improves the accuracy of the
recovered flow fields, it actually increases the energy of the
objective function. This suggests that what is being opti-
mized is actually a new and different objective. Using ob-
servations about median filtering and L1 energy minimiza-
tion from Li and Osher [23], we formulate a new non-local
term that is added to the original, classical objective. This
new term goes beyond standard local (pairwise) smoothness
to robustly integrate information over large spatial neigh-
borhoods. We show that minimizing this new energy ap-
proximates the original optimization with the heuristic me-
dian filtering step. Note, however, that the new objective
falls outside our definition of classical methods.

Finally, once the median filtering heuristic is formulated
as a non-local term in the objective, we immediately recog-
nize how to modify and improve it. In part three we show
how information about image structure and flow boundaries
can be incorporated into a weighted version of the non-local
term to prevent over-smoothing across boundaries. By in-
corporating structure from the image, this weighted version
does not suffer from some of the errors produced by median
filtering. At the time of publication (March 2010), the re-



sulting approach is ranked 1st in both angular and end-point
errors in the Middlebury evaluation.

In summary, the contributions of this paper are to (1) an-
alyze current flow models and methods to understand which
design choices matter; (2) formulate and compare several
classical objectives descended from HS using modern meth-
ods; (3) formalize one of the key heuristics and derive a new
objective function that includes a non-local term; (4) mod-
ify this new objective to produce a state-of-the-art method.
In doing this, we provide a “recipe” for others studying op-
tical flow that can guide their design choices. Finally, to en-
able comparison and further innovation, we provide a public
MATLAB implementation [1].

2. Previous Work
It is important to separately analyze the contributions of

the objective function that defines the problem (the model)
and the optimization algorithm and implementation used to
minimize it (the method). The HS formulation, for example,
has long been thought to be highly inaccurate. Barron et al.
[7] reported an average angular error (AAE) of ~ 30 degrees
on the “Yosemite” sequence. This confounds the objective
function with the particular optimization method proposed
by Horn and Schunck1. When optimized with today’s meth-
ods, the HS objective achieves surprisingly competitive re-
sults despite the expected over-smoothing and sensitivity to
outliers.

Models: The global formulation of optical flow intro-
duced by Horn and Schunck [18] relies on both brightness
constancy and spatial smoothness assumptions, but suffers
from the fact that the quadratic formulation is not robust
to outliers. Black and Anandan [10] addressed this by re-
placing the quadratic error function with a robust formula-
tion. Subsequently, many different robust functions have
been explored [12, 22, 31] and it remains unclear which is
best. We refer to all these spatially-discrete formulations
derived from HS as “classical.” We systematically explore
variations in the formulation and optimization of these ap-
proaches. The surprise is that the classical model, appropri-
ately implemented, remains very competitive.

There are many formulations beyond the classical ones
that we do not consider here. Significant ones use oriented
smoothness [25, 31, 33, 40], rigidity constraints [32, 33],
or image segmentation [9, 21, 41, 37]. While they deserve
similar careful consideration, we expect many of our con-
clusions to carry forward. Note that one can select among a
set of models for a given sequence [4], instead of finding a
“best” model for all the sequences.

Methods: Many of the implementation details that are
thought to be important date back to the early days of op-

1They noted that the correct way to optimize their objective is by solv-
ing a system of linear equations as is common today. This was impractical
on the computers of the day so they used a heuristic method.

tical flow. Current best practices include coarse-to-fine es-
timation to deal with large motions [8, 13], texture decom-
position [32, 34] or high-order filter constancy [3, 12, 16,
22, 40] to reduce the influence of lighting changes, bicubic
interpolation-based warping [22, 34], temporal averaging of
image derivatives [17, 34], graduated non-convexity [11] to
minimize non-convex energies [10, 31], and median filter-
ing after each incremental estimation step to remove outliers
[34].

This median filtering heuristic is of particular interest as
it makes non-robust methods more robust and improves the
accuracy of all methods we tested. The effect on the objec-
tive function and the underlying reason for its success have
not previously been analyzed. Least median squares estima-
tion can be used to robustly reject outliers in flow estimation
[5], but previous work has focused on the data term.

Related to median filtering, and our new non-local term,
is the use of bilateral filtering to prevent smoothing across
motion boundaries [36]. The approach separates a varia-
tional method into two filtering update stages, and replaces
the original anisotropic diffusion process with multi-cue
driven bilateral filtering. As with median filtering, the bi-
lateral filtering step changes the original energy function.

Models that are formulated with an L1 robust penalty
are often coupled with specialized total variation (TV) op-
timization methods [39]. Here we focus on generic opti-
mization methods that can apply to any model and find they
perform as well as reported results for specialized methods.

Despite recent algorithmic advances, there is a lack of
publicly available, easy to use, and accurate flow estimation
software. The GPU4Vision project [2] has made a substan-
tial effort to change this and provides executable files for
several accurate methods [32, 33, 34, 35]. The dependence
on the GPU and the lack of source code are limitations. We
hope that our public MATLAB code will not only help in un-
derstanding the “secrets” of optical flow, but also let others
exploit optical flow as a useful tool in computer vision and
related fields.

3. Classical Models
We write the “classical” optical flow objective function

in its spatially discrete form as

E(u,v) =
∑
i,j

{ρD(I1(i, j) − I2(i + ui,j , j + vi,j)) (1)

+λ[ρS(ui,j − ui+1,j) + ρS(ui,j − ui,j+1)
+ρS(vi,j − vi+1,j) + ρS(vi,j − vi,j+1)]},

where u and v are the horizontal and vertical components of
the optical flow field to be estimated from images I1 and I2,
λ is a regularization parameter, and ρD and ρS are the data
and spatial penalty functions. We consider three different
penalty functions: (1) the quadratic HS penalty ρ(x) = x2;



(2) the Charbonnier penalty ρ(x) =
√

x2 + ε2 [13], a dif-
ferentiable variant of the L1 norm, the most robust convex
function; and (3) the Lorentzian ρ(x) = log(1+ x2

2σ2 ), which
is a non-convex robust penalty used in [10]. Note that this
classical model is related to a standard pairwise Markov
random field (MRF) based on a 4-neighborhood.

In the remainder of this section we define a baseline
method using several techniques from the literature. This
is not the “best” method, but includes modern techniques
and will be used for comparison. We only briefly describe
the main choices, which are explored in more detail in the
following section and the cited references, especially [30].

Quantitative results are presented throughout the remain-
der of the text. In all cases we report the average end-point
error (EPE) on the Middlebury training and test sets, de-
pending on the experiment. Given the extensive nature of
the evaluation, only average results are presented in the
main body, while the details for each individual sequence
are given in [30].

3.1. Baseline methods

To gain robustness against lighting changes, we follow
[34] and apply the Rudin-Osher-Fatemi (ROF) structure
texture decomposition method [28] to pre-process the in-
put sequences and linearly combine the texture and struc-
ture components (in the proportion 20:1). The parameters
are set according to [34].

Optimization is performed using a standard incremental
multi-resolution technique (e.g. [10, 13]) to estimate flow
fields with large displacements. The optical flow estimated
at a coarse level is used to warp the second image toward
the first at the next finer level, and a flow increment is cal-
culated between the first image and the warped second im-
age. The standard deviation of the Gaussian anti-aliasing
filter is set to be 1√

2d
, where d denotes the downsampling

factor. Each level is recursively downsampled from its near-
est lower level. In building the pyramid, the downsampling
factor is not critical as pointed out in the next section and
here we use the settings in [31], which uses a factor of 0.8
in the final stages of the optimization. We adaptively de-
termine the number of pyramid levels so that the top level
has a width or height of around 20 to 30 pixels. At each
pyramid level, we perform 10 warping steps to compute the
flow increment.

At each warping step, we linearize the data term, which
involves computing terms of the type ∂

∂xI2(i+uk
i,j , j+vk

i,j),
where ∂/∂x denotes the partial derivative in the horizon-
tal direction, uk and vk denote the current flow estimate at
iteration k. As suggested in [34], we compute the deriva-
tives of the second image using the 5-point derivative filter
1
12 [−1 8 0 −8 1], and warp the second image and its deriva-
tives toward the first using the current flow estimate by bicu-
bic interpolation. We then compute the spatial derivatives of

Avg. Rank Avg. EPE
Classic-C 14.9 0.408
HS 24.6 0.501
Classic-L 19.8 0.530
HS [31] 35.1 0.872
BA (Classic-L) [31] 30.9 0.746
Adaptive [33] 11.5 0.401
Complementary OF [40] 10.1 0.485

Table 1. Models. Average rank and end-point error (EPE) on the
Middlebury test set using different penalty functions. Two current
methods are included for comparison.

the first image, average with the warped derivatives of the
second image (c.f . [17]), and use this in place of ∂I2

∂x . For
pixels moving out of the image boundaries, we set both their
corresponding temporal and spatial derivatives to zero. Af-
ter each warping step, we apply a 5 × 5 median filter to the
newly computed flow field to remove outliers [34].

For the Charbonnier (Classic-C) and Lorentzian
(Classic-L) penalty function, we use a graduated non-
convexity (GNC) scheme [11] as described in [31] that lin-
early combines a quadratic objective with a robust objective
in varying proportions, from fully quadratic to fully robust.
Unlike [31], a single regularization weight λ is used for both
the quadratic and the robust objective functions.

3.2. Baseline results

The regularization parameter λ is selected among a set of
candidate values to achieve the best average end-point error
(EPE) on the Middlebury training set. For the Charbonnier
penalty function, the candidate set is [1, 3, 5, 8, 10] and
5 is optimal. The Charbonnier penalty uses ε = 0.001 for
both the data and the spatial term in Eq. (1). The Lorentzian
uses σ = 1.5 for the data term, and σ = 0.03 for the spa-
tial term. These parameters are fixed throughout the exper-
iments, except where mentioned.

Table 1 summarizes the EPE results of the basic model
with three different penalty functions on the Middlebury
test set, along with the two top performers at the time of
publication (considering only published papers). The clas-
sic formulations with two non-quadratic penalty functions
(Classic-C) and (Classic-L) achieve competitive results de-
spite their simplicity. The baseline optimization of HS and
BA (Classic-L) results in significantly better accuracy than
previously reported for these models [31]. Note that the
analysis also holds for the training set (Table 2).

At the time of publication, Classic-C ranks 13th in av-
erage EPE and 15th in AAE in the Middlebury benchmark
despite its simplicity, and it serves as the baseline below. It
is worth noting that the spatially discrete MRF formulation
taken here is competitive with variational methods such as
[33]. Moreover, our baseline implementation of HS has a
lower average EPE than many more sophisticated methods.



Avg. EPE significance p-value
Classic-C 0.298 — —
HS 0.384 1 0.0078
Classic-L 0.319 1 0.0078
Classic-C-brightness 0.288 0 0.9453
HS-brightness 0.387 1 0.0078
Classic-L-brightness 0.325 0 0.2969
Gradient 0.305 0 0.4609

Table 2. Pre-Processing. Average end-point error (EPE) on the
Middlebury training set for the baseline method (Classic-C) using
different pre-processing techniques. Significance is always with
respect to Classic-C.

4. Secrets Explored

We evaluate a range of variations from the baseline ap-
proach that have appeared in the literature, in order to illu-
minate which may be of importance. This analysis is per-
formed on the Middlebury training set by changing only one
property at a time. Statistical significance is determined
using a Wilcoxon signed rank test between each modified
method and the baseline Classic-C; a p value less than 0.05
indicates a significant difference.

Pre-Processing. For each method, we optimize the regu-
larization parameter λ for the training sequences and report
the results in Table 2. The baseline uses a non-linear pre-
filtering of the images to reduce the influence of illumina-
tion changes [34]. Table 2 shows the effect of removing
this and using a standard brightness constancy model (*-
brightness). Classic-C-brightness actually achieves lower
EPE on the training set than Classic-C but significantly
lower accuracy on the test set: Classic-C-brightness =
0.726, HS-brightness = 0.759, and Classic-L-brightness
= 0.603 – see Table 1 for comparison. This disparity sug-
gests overfitting is more severe for the brightness constancy
assumption. Gradient only imposes constancy of the gra-
dient vector at each pixel as proposed in [12] (i.e. it robustly
penalizes Euclidean distance between image gradients) and
has similar performance in both training and test sets (c.f .
Table 8). See [30] for results of more alternatives.

Secrets: Some form of image filtering is useful but simple
derivative constancy is nearly as good as the more sophisti-
cated texture decomposition method.

Coarse-to-fine estimation and GNC. We vary the number
of warping steps per pyramid level and find that 3 warping
steps gives similar results as using 10 (Table 3). For the
GNC scheme, [31] uses a downsampling factor of 0.8 for
non-convex optimization. A downsampling factor of 0.5
(Down-0.5), however, has nearly identical performance

Removing the GNC step for the Charbonnier penalty
function (w/o GNC) results in higher EPE on most se-
quences and higher energy on all sequences (Table 4). This
suggests that the GNC method is helpful even for the con-
vex Charbonnier penalty function due to the nonlinearity of

Avg. EPE significance p-value
Classic-C 0.298 — —
3 warping steps 0.304 0 0.9688
Down-0.5 0.298 0 1.0000
w/o GNC 0.354 0 0.1094
Bilinear 0.302 0 0.1016
w/o TAVG 0.306 0 0.1562
Central derivative filter 0.300 0 0.7266
7-point derivative filter [13] 0.302 0 0.3125
Bicubic-II 0.290 1 0.0391
GC-0.45 (λ = 3) 0.292 1 0.0156
GC-0.25 (λ = 0.7) 0.298 0 1.0000
MF 3 × 3 0.305 0 0.1016
MF 7 × 7 0.305 0 0.5625
2× MF 0.300 0 1.0000
5× MF 0.305 0 0.6875
w/o MF 0.352 1 0.0078
Classic++ 0.285 1 0.0078

Table 3. Model and Methods. Average end-point error (EPE) on
the Middlebury training set for the baseline method (Classic-C)
using different algorithm and modeling choices.

Figure 1. Different penalty functions for the spatial terms: Char-
bonnier (ε = 0.001), generalized Charbonnier (a = 0.45 and
a = 0.25), and Lorentzian (σ = 0.03).

the data term.

Secrets: The downsampling factor does not matter when
using a convex penalty; a standard factor of 0.5 is fine.
Some form of GNC is useful even for a convex robust
penalty like Charbonnier because of the nonlinear data term.

Interpolation method and derivatives. We find that bicu-
bic interpolation is more accurate than bilinear (Table 3,
Bilinear), as already reported in previous work [34]. Re-
moving temporal averaging of the gradients (w/o TAVG),
using Central difference filters, or using a 7-point deriva-
tive filter [13] all reduce accuracy compared to the base-
line, but not significantly. The MATLAB built-in function
interp2 is based on cubic convolution approximation [20].
The spline-based interpolation scheme [26] is consistently
better (Bicubic-II). See [30] for more discussions.

Secrets: Use spline-based bicubic interpolation with a 5-
point filter. Temporal averaging of the derivatives is proba-
bly worthwhile for a small computational expense.

Penalty functions. We find that the convex Charbonnier
penalty performs better than the more robust, non-convex
Lorentzian on both the training and test sets. One reason
might be that non-convex functions are more difficult to op-
timize, causing the optimization scheme to find a poor local



(a) With median filtering (b) Without median filtering

Figure 2. Estimated flow fields on sequence “RubberWhale” using
Classic-C with and without (w/o MF) the median filtering step.
Color coding as in [6]. (a) (w/ MF) energy 502, 387 and (b) (w/o
MF) energy 449, 290. The median filtering step helps reach a so-
lution free from outliers but with a higher energy.

optimum. We investigate a generalized Charbonnier penalty
function ρ(x) = (x2 + ε2)a that is equal to the Charbon-
nier penalty when a = 0.5, and non-convex when a < 0.5
(see Figure 1). We optimize the regularization parameter λ
again. We find a slightly non-convex penalty with a = 0.45
(GC-0.45) performs consistently better than the Charbon-
nier penalty, whereas more non-convex penalties (GC-0.25
with a = 0.25) show no improvement.

Secrets: The less-robust Charbonnier is preferable to the
Lorentzian and a slightly non-convex penalty function (GC-
0.45) is better still.

Median filtering. The baseline 5 × 5 median filter (MF
5×5) is better than both MF 3×3 [34] and MF 7×7 but the
difference is not significant (Table 3). When we perform 5×
5 median filtering twice (2× MF) or five times (5× MF) per
warping step, the results are worse. Finally, removing the
median filtering step (w/o MF) makes the computed flow
significantly less accurate with larger outliers as shown in
Table 3 and Figure 2.

Secrets: Median filtering the intermediate flow results once
after every warping iteration is the single most important
secret; 5 × 5 is a good filter size.

4.1. Best Practices

Combining the analysis above into a single approach
means modifying the baseline to use the slightly non-
convex generalized Charbonnier and the spline-based bicu-
bic interpolation. This leads to a statistically significant
improvement over the baseline (Table 3, Classic++). This
method is directly descended from HS and BA, yet updated
with the current best optimization practices known to us.
This simple method ranks 9th in EPE and 12th in AAE on
the Middlebury test set.

5. Models Underlying Median Filtering
Our analysis reveals the practical importance of median

filtering during optimization to denoise the flow field. We

ask whether there is a principle underlying this heuristic?
One interesting observation is that flow fields obtained

with median filtering have substantially higher energy than
those without (Table 4 and Figure 2). If the median filter
is helping to optimize the objective, it should lead to lower
energies. Higher energies and more accurate estimates sug-
gest that incorporating median filtering changes the objec-
tive function being optimized.

The insight that follows from this is that the median fil-
tering heuristic is related to the minimization of an objective
function that differs from the classical one. In particular the
optimization of Eq. (1), with interleaved median filtering,
approximately minimizes

EA(u,v, û, v̂) = (2)∑
i,j

{
ρD(I1(i, j) − I2(i + ui,j , j + vi,j))

+λ[ρS(ui,j − ui+1,j) + ρS(ui,j − ui,j+1)+

ρS(vi,j − vi+1,j) + ρS(vi,j − vi,j+1)]
}

+λ2(||u − û||2 + ||v − v̂||2)

+
∑
i,j

∑
(i′,j′)∈Ni,j

λ3(|ûi,j − ûi′,j′ | + |v̂i,j − v̂i′,j′ |),

where û and v̂ denote an auxiliary flow field, Ni,j is the set
of neighbors of pixel (i, j) in a possibly large area and λ2

and λ3 are scalar weights. The term in braces is the same
as the flow energy from Eq. (1), while the last term is new.
This non-local term [14, 15] imposes a particular smooth-
ness assumption within a specified region of the auxiliary
flow field û, v̂2. Here we take this term to be a 5×5 rectan-
gular region to match the size of the median filter in Classic-
C. A third (coupling) term encourages û, v̂ and u,v to be
the same (c.f . [33, 39]).

The connection to median filtering (as a denoising
method) derives from the fact that there is a direct relation-
ship between the median and L1 minimization. Consider
a simplified version of Eq. (2) with just the coupling and
non-local terms, where E(û) =

λ2||u − û||2 +
∑
i,j

∑
(i′,j′)∈Ni,j

λ3|ûi,j − ûi′,j′ |. (3)

While minimizing this is similar to median filtering u, there
are two differences. First, the non-local term minimizes the
L1 distance between the central value and all flow values
in its neighborhood except itself. Second, Eq. (3) incorpo-
rates information about the data term through the coupling
equation; median filtering the flow ignores the data term.

The formal connection between Eq. (3) and median fil-
tering3 is provided by Li and Osher [23] who show that min-

2Bruhn et al. [13] also integrated information over a local region in a
global method but did so for the data term.

3Hsiao et al. [19] established the connection in a slightly different way.



Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3
Classic-C 0.589 0.748 0.866 0.502 1.816 2.317 1.126 1.424
w/o GNC 0.593 0.750 0.870 0.506 1.845 2.518 1.142 1.465
w/o MF 0.517 0.701 0.668 0.449 1.418 1.830 1.066 1.395

Table 4. Eq. (1) energy (×106) for the optical flow fields computed on the Middlebury training set. Note that Classic-C uses graduated
non-convexity (GNC), which reduces the energy, and median filtering, which increases it.

imizing Eq. (3) is related to a different median computation

û
(k+1)
i,j = median(Neighbors(k) ∪ Data) (4)

where Neighbors(k) = {û(k)
i′,j′} for (i′, j′) ∈ Ni,j and

û(0) = u as well as

Data = {ui,j , ui,j ± λ3
λ2

, ui,j ± 2λ3
λ2

· · · , ui,j ± |Ni,j |λ3
2λ2

},

where |Ni,j | denotes the (even) number of neighbors of
(i, j). Note that the set of “data” values is balanced with
an equal number of elements on either side of the value ui,j

and that information about the data term is included through
ui,j . Repeated application of Eq. (4) converges rapidly [23].

Observe that, as λ3/λ2 increases, the weighted data val-
ues on either side of ui,j move away from the values of
Neighbors and cancel each other out. As this happens,
Eq. (4) approximates the median at the first iteration

û
(1)
i,j ≈ median(Neighbors(0) ∪ {ui,j}). (5)

Eq. (2) thus combines the original objective with an ap-
proximation to the median, the influence of which is con-
trolled by λ3/λ2. Note in practice the weight λ2 on the
coupling term is usually small or is steadily increased from
small values [34, 39]. We optimize the new objective (2) by
alternately minimizing

EO(u,v) =
∑
i,j

ρD(I1(i, j) − I2(i + ui,j , j + vi,j))

+λ[ρS(ui,j − ui+1,j) + ρS(ui,j − ui,j+1)
+ρS(vi,j − vi+1,j) + ρS(vi,j − vi,j+1)]

+λ2(||u − û||2 + ||v − v̂||2) (6)

and

EM (û, v̂) = λ2(||u − û||2 + ||v − v̂||2) (7)

+
∑
i,j

∑
(i′,j′)∈Ni,j

λ3(|ûi,j − ûi′,j′ | + |v̂i,j − v̂i′,j′ |).

Note that an alternative formulation would drop the cou-
pling term and impose the non-local term directly on u and
v. We find that optimization of the coupled set of equations
is superior in terms of EPE performance.

The alternating optimization strategy first holds û, v̂
fixed and minimizes Eq. (6) w.r.t. u,v. Then, with u,v
fixed, we minimize Eq. (7) w.r.t. û, v̂. Note that Eqs. (3) and

Avg. EPE significance p-value
Classic-C 0.298 — —
Classic-C-A 0.305 0 0.8125

Table 5. Average end-point error (EPE) on the Middlebury train-
ing set is shown for the new model with alternating optimization
(Classic-C-A).

(7) can be minimized by repeated application of Eq. (4); we
use this approach with 5 iterations. We perform 10 steps of
alternating optimizations at every pyramid level and change
λ2 logarithmically from 10−4 to 102. During the first and
second GNC stages, we set u,v to be û, v̂ after every warp-
ing step (this step helps reach solutions with lower energy
and EPE [30]). In the end, we take û, v̂ as the final flow
field estimate. The other parameters are λ = 5, λ3 = 1.

Alternatingly optimizing this new objective function
(Classic-C-A) leads to similar results as the baseline
Classic-C (Table 5). We also compare the energy of these
solutions using the new objective and find the alternat-
ing optimization produces the lowest energy solutions, as
shown in Table 6. To do so, we set both the flow field u,v
and the auxiliary flow field û, v̂ to be the same in Eq. (2).

In summary, we show that the heuristic median filter-
ing step in Classic-C can now be viewed as energy min-
imization of a new objective with a non-local term. The
explicit formulation emphasizes the value of robustly inte-
grating information over large neighborhoods and enables
the improved model described below.

6. Improved Model
By formalizing the median filtering heuristic as an ex-

plicit objective function, we can find ways to improve it.
While median filtering in a large neighborhood has advan-
tages as we have seen, it also has problems. A neighborhood
centered on a corner or thin structure is dominated by the
surround and computing the median results in oversmooth-
ing as illustrated in Figure 3(a).

Examining the non-local term suggests a solution. For a
given pixel, if we know which other pixels in the area be-
long to the same surface, we can weight them more highly.
The modification to the objective function is achieved by
introducing a weight into the non-local term [14, 15]:∑

i,j

∑
(i′,j′)∈Ni,j

wi,j,i′,j′(|ûi,j − ûi′,j′ |+ |v̂i,j − v̂i′,j′ |), (8)

where wi,j,i′,j′ represents how likely pixel i′, j′ is to belong
to the same surface as i, j.



Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3
Classic-C 0.817 0.903 1.202 0.674 2.166 3.144 1.954 2.153
Classic-C w/o MF 0.886 0.945 1.299 0.725 2.315 3.513 2.234 2.712
Classic-C-A 0.784 0.889 1.139 0.666 2.064 2.976 1.922 2.049

Table 6. Eq. (2) energy (×106) for the computed flow fields on the Middlebury training set. The alternating optimization strategy (Classic-
C-A ) produces the lowest energy solutions.

(a) (b)

Figure 3. Median filtering over-smoothes the rifle in the “Army”
sequence, while the proposed weighted non-local term preserves
the detail. Results of (a) Classic++ (b) Classic+NL.

Of course, we do not know wi,j,i′,j′ , but can approximate
it. We draw ideas from [29, 36, 38] to define the weights ac-
cording to their spatial distance, their color-value distance,
and their occlusion state as wi,j,i′,j′ ∝

exp
{
− |i−i′|2+|j−j′|2

2σ2
1

− |I(i,j)−I(i′,j′)|2
2σ2

2

}o(i′, j′)
o(i, j)

, (9)

where the occlusion variable o(i, j) is calculated using
Eq. (22) in [29], I(i, j) is the color vector in the Lab space,
and σ1 = 7, σ2 = 7. Examples of such weights are shown
for several 15 × 15 neighborhoods in Figure 4; bright val-
ues indicate higher weights. Note the neighborhood labeled
d, corresponding to the rifle. Since pixels on the rifle are
in the minority, an unweighted median would oversmooth.
The weighted term instead robustly estimates the motion
using values on the rifle. A closely related piece of work is
[27], which uses the intervening contour to define affinities
among neighboring pixels for the local Lucas and Kanade
[24] method. However it only uses this scheme to estimate
motion for sparse points and then interpolates the dense
flow field.

We approximately solve Eq. (9) for û, v̂ as the following
weighted median problem

min
ûi,j

∑
(i′,j′)∈Ni,j∪{i,j}

wi,j,i′,j′ |ûi,j − ui′,j′ |, (10)

using the formula (3.13) in [23] for all the pixels
(Classic+NL-Full). Note if all the weights are equal, the
solution is just the median. In practice, we can adopt a fast
version (Classic+NL) without performance loss. Given a
current estimate of the flow, we detect motion boundaries
using a Sobel edge detector and dilate these edges with a
5 × 5 mask to obtain flow boundary regions. In these re-
gions we use the weighting in Eq. (9) in a 15×15 neighbor-
hood. In the non-boundary regions, we use equal weights in
a 5 × 5 neighoborhood to compute the median.

(a) (b) (c) (d) (e)

Figure 4. Neighbor weights of the proposed weighted non-local
term at different positions in the “Army” sequence.

Avg. EPE significance p-value
Classic+NL 0.221 — —
Classic+NL-Full 0.222 0 0.8203

Table 7. Average end-point error (EPE) on the Middlebury training
set is shown for the fast and full versions of the improved model.

Avg. Rank Avg. EPE
Classic++ 13.4 0.406
Classic++Gradient 15.1 0.430
Classic+NL 6.2 0.319
Classic+NL-Full 6.6 0.316

Table 8. Average end-point error (EPE) on the Middlebury test set
for the Classic++ model with two different preprocessing tech-
niques and its improved model.

Tables 7 and 8 show that the weighted non-local term
(Classic+NL) improves the accuracy on both the training
and the test sets. Note that the fine detail of the “rifle” is
preserved in Figure 3(b). At the time of publication, Clas-
sic+NL ranks 1st in both AAE and EPE in the Middlebury
evaluation and has the lowest average AAE and EPE among
all listed algorithms. The running time on the test “Ur-
ban” sequence is about 70 minutes for Classic+NL-Full
and about 16 miniutes for Classic+NL in MATLAB.

7. Conclusions

Implemented using modern practices, classical optical
flow formulations produce competitive results on the Mid-



dlebury training and test sets. To understand the “secrets”
that help such basic formulations work well, we quantita-
tively studied various aspects of flow approaches from the
literature, including their implementation details. Among
the good practices, we found that using median filtering to
denoise the flow after every warping step is key to improv-
ing accuracy, but that it increases the energy of the final re-
sult. Exploiting connections between median filtering and
L1-based denoising, we showed that algorithms relying on a
median filtering step are approximately optimizing a differ-
ent objective that regularizes flow over a large spatial neigh-
borhood. This principle enables us to design and optimize
improved models that weight the neighbors adaptively in an
extended image region. At the time of publication (March
2010), the resulting algorithm ranks 1st in both angular and
end-point errors in the Middlebury evaluation. The MAT-
LAB code is publicly available [1].

How far can the 2-frame classical methods be pushed?
Our sense is that they are likely to improve incrementally
for several years to come, but that the big gains will come
from methods that go beyond the classical formulation to
reason more explicitly about surfaces and boundaries and
how they move over time.
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