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Abstract

We present a novel approach to noise-blind deblurring,
the problem of deblurring an image with known blur, but
unknown noise level. We introduce an efficient and robust
solution based on a Bayesian framework using a smooth
generalization of the 0-1 loss. A novel bound allows the cal-
culation of very high-dimensional integrals in closed form.
It avoids the degeneracy of Maximum a-Posteriori (MAP)
estimates and leads to an effective noise-adaptive scheme.
Moreover, we drastically accelerate our algorithm by using
Majorization Minimization (MM) without introducing any
approximation or boundary artifacts. We further speed up
convergence by turning our algorithm into a neural network
termed GradNet, which is highly parallelizable and can be
efficiently trained. We demonstrate that our noise-blind for-
mulation can be integrated with different priors and signifi-
cantly improves existing deblurring algorithms in the noise-
blind and in the known-noise case. Furthermore, GradNet
leads to state-of-the-art performance across different noise
levels, while retaining high computational efficiency.

1. Introduction
Non-blind image deblurring has been studied extensively

in the literature. Its principal assumption is that the blur
kernel affecting the image is known ahead of time. While
this may seem limiting, the blur may be known from the de-
sign of the imaging system [14] or can be estimated through
other modalities, e.g., inertial sensors [12]. Moreover, the
vast majority of blind deblurring algorithms have a non-
blind subcomponent [15], alternating between kernel esti-
mation and non-blind deblurring.

Even if the blur kernel is known, image deblurring is still
difficult due to the loss of high-frequency information and
the sensor noise. Moreover, noise cannot be avoided even
with the best image sensors. Although we might theoreti-
cally calibrate the noise level for each camera and each ISO
level, this quickly becomes infeasible in practice.

One approach to address this issue is to use a separate
noise estimator to tune a deblurring algorithm that assumes

known noise. For example [13, 24, 25, 37] focus on the
scenario where the noise level is known or user specified.
Discriminative approaches [24, 25] are even custom-trained
for specific noise levels; we would need to train and store a
deblurring method for each noise level, which is not practi-
cal. A key challenge of a separate noise estimation step is
that most noise estimation algorithms [6, 8, 17, 19, 35] are
designed for non-blurry input. An exception is [36], which
is able to estimate noise levels from blurry images. As we
show in the experiments, the combination of noise estima-
tion with subsequent deblurring can be suboptimal both in
accuracy and in execution time.

Therefore, we aim at estimating both the noise level and
a sharp image from a single noisy and blurred image, a
problem that we call noise-blind image deblurring. There
has been very little work on noise-blind deblurring so far.
Schmidt et al. [26] propose a Bayesian framework to deal
with the noise-blind case. Nevertheless, their sampling-
based technique is computationally very intensive, thus im-
practical for high-resolution images. In fact, computational
efficiency is a challenge even in the known noise case; only
very few fast and effective approaches exist [13, 25, 30].

In this paper, we propose an approach to noise-blind de-
blurring based on a noise-adaptive formulation derived from
Bayesian principles. More specifically, instead of using the
common 0-1 loss, which yields the well-known Maximum
a-Posteriori (MAP) estimation, we use a smooth Gaussian
utility function. We treat noise as a parameter that can be
integrated into the data term of the energy function. As a
consequence our formulation is noise-adaptive, and tuning
for different noise levels is no longer needed. Moreover,
we majorize the energy function, such that FFT-based pre-
conditioning can be applied, which speeds up the execution
process significantly, but also avoids artifacts from circular
boundary assumptions [25, 30]. We combine the above for-
mulations and derive a convolutional neural network, which
we call GradNet, that can solve the noise-blind image de-
blurring problem with very high computational efficiency.
Each block of layers in GradNet implements a gradient de-
scent step. Thus, the training of such network is the opti-
mization of a gradient descent algorithm [2, 7]. We can also
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interpret GradNet as a generalization of the diffusion net-
work of [4] to the noise-blind deblurring problem, where
we integrated our noise adaptivity and FFT-based precon-
ditioning. Hence, our network is also highly parallelizable
and well-suited for computation on GPUs, which makes in-
ference very fast, yet achieves very high image quality.

Our work makes a number of contributions: (1) The
proposed noise-adaptive formulation is conceptually sim-
ple and easy to calculate, with little computational cost; (2)
it is easily integrated into existing image restoration frame-
works, and even with a simple total variation prior it can al-
ready achieve high levels of image quality; (3) the automatic
weighting between data term and prior can yield significant
benefits even in the known-noise case (0.3–0.7dB on aver-
age); (4) our noise-adaptive formulation is also able to deal
with colored (spatially correlated) noise (see supplementary
material); (5) FFT-based preconditioning makes solving the
non-blind deblurring problem much faster; (6) our trainable
network GradNet makes inference even faster, yet outper-
forms the state of the art especially for large blur kernels.

2. Related Work
Non-blind deblurring is used not only when kernels are

known [14], but also in blind deblurring [5, 9, 15, 16, 20,
22, 28, 29, 32, 34] to restore the final sharp images.

Most non-blind deblurring approaches can be divided
into two classes, either based on iterative energy minimiza-
tion [13, 14, 30, 37] or discriminative learning [24, 25, 27,
33]. Wang et al. [30] rely on total variation and use half-
quadratic techniques to speed up optimization. Krishnan
and Fergus [13] similarly combine high-quality results with
fast execution. Levin et al. [14] formulate a more advanced
prior using second-order derivative filters. Zoran and Weiss
[37] use a Gaussian mixture prior, which is learned from
a set of natural images. This approach (EPLL) has been
widely used in blind deblurring for estimating the final
sharp image owing to its high-quality restoration results.
However, all these methods need to be well tuned according
to the noise level at test time. On the other hand, Schuler
et al. [27] propose a two-step approach, which first uses
a regularized inversion of the blur in the Fourier domain
and then removes the noise in the second step. Schmidt
and Roth [25] propose shrinkage fields, a discriminatively
trained network architecture, which is very efficient. How-
ever, it suffers from boundary artifacts due to its circular
boundary assumption and is not noise adaptive. Schmidt et
al. [24] propose a Gaussian conditional random field frame-
work, where parameters are predicted using learned regres-
sion trees [11]. Xu et al. [33] design a CNN to handle
saturation and nonlinearities of the model. However, these
learning approaches are designed/trained for a specific noise
level and not robust to other noise levels. Bayesian deblur-
ring [26] is an exception, which is able to integrate non-

blind deblurring and noise estimation with a Bayesian min-
imum mean squared error estimate. However, this approach
is computationally inefficient; scaling it to larger images is
prohibitively slow.

An intuitive way to deal with noise-blind deblurring is
first to estimate noise [6, 8, 17, 19, 35] and then apply exist-
ing non-blind deblurring algorithms. Donoho et al. [8] pro-
pose a mean absolute deviation (MAD) framework to infer
noise levels from the wavelet coefficients at the highest res-
olution. Zlokolica et al. [35] extend the MAD framework
to video noise estimation. Liu et al. [17] estimate an upper
bound on the noise level from a single image based on a
piecewise smooth image prior. De Stefano et al. [6] explore
the relationship between kurtosis values and image noise
in a wavelet-based approach. Liu et al. [19] apply principal
component analysis to selected patches to estimate the noise
level. However, none of these methods explicitly deals with
the case where the image is also blurry. The work of Zoran
and Weiss [37] is an exception, which exploits the connec-
tion between kurtosis values and image noise levels. Their
work can also estimate the noise level under image blur.

3. Bayesian Noise-Blind Image Deblurring
Let x̄ represent an unknown sharp image and k a given

blur kernel with non-negative values integrating to 1. We
assume that the observed blurry image y is formed1 as

y = k ∗ x̄+ n, n ∼ N (0, σ̄n), (1)

where n is Gaussian zero-mean noise with unknown stan-
dard deviation σ̄n. Alternatively, we can rewrite the image
formation via the Toeplitz matrix K of the blur kernel k as
y = Kx̄ + n, where we rearranged the sharp and blurry
images, as well as the noise n into column vectors. We con-
sider σ̄n a parameter, which is equivalent to assuming that
it follows a yet unknown Dirac delta distribution. We aim
to recover both x̄ and σ̄n given y and k.

To that end we first define a loss function L between the
true (x̄, σ̄n) and the estimate (x, σn), given observation y
and kernel k. Formally speaking, the loss function maps
(y, k, x̄, σ̄n, x, σn) to [0,∞). For notational simplicity, we
drop y, k as they are fixed. Also, since σn and σ̄n are pa-
rameters, i.e. modeled by Dirac delta distributions, they are
forced to be equal (for reasonable loss functions). We can
thus directly substitute σ̄n with σn and omit the parameters
σn and σ̄n in the definition of the loss function.

In our formulation we consider Bayes’ risk

Ex̄,y;σn [L(x̄, x)] =

∫
L(x̄, x)p(x̄, y;σn) dx̄ dy, (2)

and define the estimator (x̃, σ̃n) via

(x̃, σ̃n) = arg min
x,σn

Ex̄,y;σn [L(x̄, x)]. (3)

1∗ is a ‘valid’ convolution, i.e., the output y is smaller than the input x.



A common choice is the 0-1 loss

L(x̄, x) = 1− δ(x̄− x), (4)

which leads to the Maximum-a-Posteriori (MAP) problem

(x̃, σ̃n) = arg max
x,σn

p(y|x;σn)p(x). (5)

Here, the joint probability p(x, y;σn) = p(y|x;σn)p(x)
is written as product of likelihood and prior. Now, let us
consider the denoising case (k = 1). The log-likelihood is
given as

log p(y|x;σn) = − 1
2σ2
n
|y − x|2 −M log σn + const, (6)

where M is the number of pixels in x and the constant is
due to the partition function. The MAP solution becomes

arg min
x,σn

1
2σ2
n
|y − x|2 +M log σn − log p(x). (7)

By setting the first derivative w.r.t. σn to 0, we have

σ2
n = 1

M |y − x|2, (8)

which is the well-known variance sample estimator. We
plug this closed form solution into Eq. (7) and obtain

x̃ = arg min
x

M
2 log |y − x|2 − log p(x). (9)

The solution to Eq. (9) is x̃ = y, since the first term tends
to −∞ while the second term will be typically finite at x =
y. This solution, however, is undesirable as it performs no
denoising. To address this failure, we introduce a different
loss function and a novel lower bound.

4. Beyond Maximum a-Posteriori
To avoid the degenerate solution of Eq. (9) we introduce

a family of loss functions that does not drastically penalize
small errors of the estimators. Let us define the loss function
as L(x̄, x) = 1−G(x̄, x), where we call G the utility func-
tion,2 and impose that G(x̄, x) ≥ 0 and

∫
G(x̄, x) dx̄ = 1.

For example, we can choose a Gaussian density with parti-
tion function Z and variance σ2:

G(x̄, x) = 1
Z exp

[
− |x̄−x|

2

2σ2

]
. (10)

This family of smooth loss functions generalizes the 0-1
loss, which is its limit case as σ → 0. We then obtain

Ex̄,y;σn [L(x̄, x)] = 1− Ex̄,y;σn [G(x̄, x)], (11)

2Notice that the two constraints on G are irrelevant (in the vast majority
of instances) as far as Bayes’ risk minimization is concerned. Positivity can
be achieved by adding a constant to the loss function and normalization can
be achieved by scaling the whole cost by a positive constant. Both of these
modifications to Bayes’ risk will not affect the minimizer (as long as the
loss function is bounded from below).

and the minimization of Bayes’ risk

arg min
x,σn

Ex̄,y;σn [L(x̄, x)] = arg max
x,σn

Ex̄,y;σn [G(x̄, x)]

(12)

becomes the maximization of Bayes’ utility (BU). More ex-
plicitly, we have

arg max
x,σn

Ex̄,y;σn [G(x̄, x)] = arg max
x,σn

logEx̄,y;σn [G(x̄, x)]

= arg max
x,σn

log

∫
G(x̄, x)p(x̄, y;σn) dx̄. (13)

Because of Jensen’s inequality and since log is concave, the
logarithm of BU has a lower bound (right hand side)

log

∫
G(x̄, x)p(x̄, y;σn) dx̄ ≥

∫
G(x̄, x) log p(x̄, y;σn) dx̄

(14)

and therefore

max
x,σn

log

∫
G(x̄, x)p(x̄, y;σn) dx̄ ≥

max
x,σn

∫
G(x̄, x) log p(x̄, y;σn) dx̄. (15)

The advantage of the above lower bound to BU is that it can
be computed in closed form – despite the high-dimensional
integral – whenever log p(x̄, y;σn) = log p(y|x̄;σn) +
log p(x̄) takes simple forms (e.g., linear or quadratic).

Data fidelity term. Let us now consider the deblurring
problem. We start by considering the log-likelihood

log p(y|x̄;σn) = − |y−k∗x̄|
2

2σ2
n
−N log σn + const, (16)

where N is the number of pixels of the blurry image y. By
plugging Eq. (16) into the right hand side of Eq. (14) the
contribution of the log-likelihood to the bound becomes∫

G(x̄, x) log p(y|x̄;σn) dx̄ (17)

= −
∫

1
Z e
− |x̄−x|

2

2σ2 |y−k∗x̄|2
2σ2
n

dx̄−N log σn + const

= − |y−k∗x|
2

2σ2
n
−M σ2

2σ2
n
|k|2 −N log σn + const.

Image priors. We consider a product of type-1 Gumbel
density functions [21] of the squared norm of image filter
responses as image prior. A broad enveloping Gaussian en-
sures the distribution to be proper. This prior takes the form

log p(x̄) = − |x̄|
2

2σ2
0

+
∑
ijk

wij exp
[
− |Fikx̄−µj |

2

2σ2
j

]
+ const,

(18)



where Fi are Toeplitz matrices representing the filters, Fik
yields the kth entry of the output and is therefore a row vec-
tor with M pixels; µj and σj are parameters. σ2

0 is chosen
to be a large constant. Later we will see that this prior has
connections to common priors based on products of Gaus-
sian mixtures [26, 37]. The weights wij must be positive,
but do not have to sum to 1 here. Other priors, such as total
variation, are discussed in the supplementary material.

By constraining the filters to |Fik|2 = 1, we obtain the
contribution of the log-prior to the bound in Eq. (14)∫

G(x̄, x) log p(x̄) dx̄ = (19)

− |x|
2

2σ2
0
−
∑
ijk

ŵij exp
[
− |Fikx−µj |

2

2(σ2+σ2
j )

]
+ const,

where, for ease of notation, we define

ŵij = −wij exp
[
−µ2

j
σ2

σ2
j (σ2+σ2

j )

]
. (20)

Notice that when σ → 0 the bound collapses to Eq. (18).

Image deblurring. Finally, we can put all the terms to-
gether and solve the maximization of the lower bound

arg max
x,σn

∫
G(x̄, x) log p(x̄, y;σn) dx̄ (21)

to BU as the following problem:

(x̂, σ̂n) = arg min
x,σn

|y−k∗x|2+Mσ2|k|2
2σ2
n

+N log σn

+ |x|2
2σ2

0
+
∑
ijk

ŵij exp
[
− |Fikx−µj |

2

2(σ2+σ2
j )

]
.

(22)

We can now solve explicitly for σn and obtain

σ2
n = 1

N

[
|y − k ∗ x|2 +Mσ2|k|2

]
. (23)

This closed form can be incorporated in Eq. (22) and yields

x̂ = arg min
x

U [x]
.
= arg min

x

N
2 log

[
|y − k ∗ x|2

+Mσ2|k|2
]

+ |x|2
2σ2

0
+
∑
ijk

ŵij exp
[
− |Fikx−µj |

2

2(σ2+σ2
j )

]
.

(24)

We point out that this formulation does not lead to degener-
ate solutions in the case of denoising or deblurring. In fact
with denoising (k = 1), Eq. (24) is not minimized at x = y.
In the more general noise-blind deblurring formulation, we
can explicitly obtain the gradient descent iteration

xτ+1 = xτ − α∇xU [xτ ] (25)

∇xU [xτ ] = λτK>(Kxτ − y) + xτ

σ2
0
−
∑
ik

F>ikφi(Fikx
τ )

φi(z) =
∑
j

ŵij exp
[
− |z−µj |

2

2(σ2+σ2
j )

]
z−µj
σ2+σ2

j
,

for some small step α > 0, where xτ denotes the solution at
gradient descent iteration τ and λτ = N

|y−Kxτ |2+Mσ2|k|2 .

Discussion. The alternative Bayesian approach by Schmidt
et al. [26] instead directly minimizes the Bayesian mini-
mum mean squared error (MMSE)

x̂ = arg min
x

∫
|x̄− x|2p(x̄, σ̄n|y) dx̄ dσ̄n. (26)

This very high-dimensional integration is then solved via
Gibbs sampling, but it is computationally intensive. In con-
trast, in our case the form of the utility function and the
proposed lower bound allow a simple analytical solution.
Notice that while we focus on Gaussian utility functions,
other choices (of probability density functions) lead to sim-
ilar closed form solutions. The utility function G has a reg-
ularizing effect on both the noise estimates through λτ and
the image prior filters. When σ � 1 then λτ is biased to-
wards larger noise estimates and the image prior tends to
flatten more the filter responses while fixing the coefficients
ŵij to −wij exp[−µ2

j/σ2
j ] (see Eq. 20).

Notice also that ∇xU [xτ ] is similar to the gradient of a
standard least squares estimation with some prior p(x):

UL2 [x]
.
= λ

2 |y − k ∗ x|2 − log p(x)

∇xUL2
[xτ ] = λK>(Kxτ − y)− p′(xτ )

p(xτ ) .
(27)

The main difference is that in Eq. (25) the parameter λτ

changes during each iteration τ and thus adaptively deter-
mines the amount of regularization. Instead, λ is constant
in the minimization of UL2 . As shown later, our adaptive
λτ yields a better solution than any choice of a fixed λ.

5. Exact Preconditioning
We now describe an alternative method to the gradient

descent iteration of Eq. (25), which minimizes the problem
in Eq. (24) more efficiently while not introducing any ap-
proximation. We use the Majorization Minimization (MM)
technique [10]. MM defines an iteration much like gra-
dient descent, but such that every step is easy to com-
pute and still provably minimizes the original cost, here
Eq. (24). We first define a surrogate function ψ(x|xτ ),
where xτ is the solution at iteration τ , such that ∀x we have
ψ(x|xτ ) ≥ U [x], and ψ(xτ |xτ ) = U [xτ ]. We split the con-
struction of ψ into two surrogate functions ψ1 and ψ2, i.e.,
ψ(x|xτ ) = ψ1(x|xτ ) + ψ2(x|xτ ), each of which will be a
surrogate function to one of the terms in Eq. (24), i.e., ∀x

ψ1(x|xτ ) ≥ N
2 log

[
|y − k ∗ x|2 +Mσ2|k|2

]
ψ2(x|xτ ) ≥ |x|

2

2σ2
0

+
∑
ijk

ŵij exp
[
− |Fikx−µj |

2

2(σ2+σ2
j )

]
. (28)

Data term. The logarithm in the first term in Eq. (24) is
concave and thus we can use a first-order Taylor expansion



as upper bound. Furthermore, we add a quadratic term with
the Toeplitz matrixH corresponding to the periodic circular
convolution with kernel k. By using the matrix notation K
for the blur k and λτ , we have

ψ1(x|xτ ) =
[
λτK>(Kxτ − y)

]>
(x− xτ ) (29)

+ (x− xτ )>λτ H
>H
2 (x− xτ ) + const(xτ ).

Image prior. In the second term we use a quadratic upper
bound instead:

ψ2(x|xτ ) = const(xτ )+
(
xτ

σ2
0
−∑ik F

>
ikφi(Fikx

τ )
)>
(x−xτ )

+ γ
2 (x− xτ )>

(
δ +

∑
ik F

>
ikFik

)
(x− xτ ), (30)

where γ = maxi 2
∑
j
|ŵij |
σ2+σ2

j
and δ = 1

γσ2
0

.

Preconditioning. Now we can minimize ψ(x|xτ ) with re-
spect to x by setting its gradient to 0:

∇xψ(x|xτ ) =λτK>(Kxτ − y) + λτH>H(x− xτ )

+ xτ

σ2
0
−∑ik F

>
ikφi(Fikx

τ ) (31)

+ γ
(
δ +

∑
ik F

>
ikFik

)
(x− xτ ) = 0.

Since this is a linear system, we arrive at the iteration

xτ+1 = xτ − Λ∇xU [xτ ]

Λ−1 = λτH>H + γ
(
δI +

∑
ik F

>
ikFik

)
,

(32)

which is a modification of the previous gradient descent in
Eq. (25) via preconditioning. Since preconditioning with
positive semidefinite matrices maintains the convergence of
gradient descent, we can also substitute the filters Fi in
the preconditioner with the corresponding periodic circular
convolution Toeplitz matrices Bi and obtain our algorithm

xτ+1 = xτ − Λ∇xU [xτ ]

Λ−1 = λτH>H + γ
∑
ik B

>
ikBik + 1

σ2
0
I

∇xU [xτ ] = λτK>(Kxτ − y)

+ xτ

σ2
0
−∑ik F

>
ikφi(Fikx

τ )

φi(z) =
∑
j ŵij exp

[
− |z−µj |

2

2(σ2+σ2
j )

]
z−µj
σ2+σ2

j
.

(33)

This preconditioner can be computed very efficiently via the
fast Fourier transform (FFT) [25]. Notice that our derivation
ensures convergence to a local minimum of the original cost
U [x], and thus unlike [25] it does not suffer from artifacts
due to the periodic boundary assumptions of H and Bik.
In other words, circular convolutions are only used in the
preconditioner, but not in the cost and its gradient, where
valid convolutions are applied.

Figure 1. Cost UTV with and without preconditioning. The pro-
posed preconditioning (Eq. 32) leads to much faster convergence.

Figure 1 shows the average cost UTV (± the standard de-
viation), where we used the TV prior in Eq. (33), against the
iteration time over 32 images from the dataset of Levin et
al. [16] with and without preconditioning (omitting noise-
adaptivity and noise). Notice how preconditioning acceler-
ates convergence between 6 and 6.5 times.

Discussions. We now point out some fundamental differ-
ences and similarities between two previous methods [4, 25]
and Eq. (33). First, we turn to the cascade of shrinkage
fields (CSF) of Schmidt and Roth [25]. Even though not
originally derived in this way, based on Sec. 3 we can
rewrite Eq. (10) in [25] as a gradient descent step with pre-
conditioning (with σ2

0 →∞)

xτ+1 = xτ − Λ−1∇xUSF[xτ ] (34)

∇xUSF[xτ ] = λH>(Hxτ − y)−∑ik B
>
ikφ

SF
i (Bikx

τ )

φSF
i (z) = z −∑j πij exp

[
−γSF|z − µj |2

]
.

The main differences to our approach are (1) the missing
noise adaptivity term λτ , (2) the use of Toeplitz matrices H
and Bik in the definition of the gradient leading to artifacts
in shrinkage fields due to circular boundary conditions, and
(3) in the definition of φSF

i , which we interpret as an approx-
imation of the gradient of the negative log of an image prior.
Based on our derivation, the above iteration can be seen as
the minimizer of the following image prior (c.f . Eq.18)

log p(x) = −∑ijk

[
|Fikx|2

2 + π̂ije
−γSF|Fikx−µj |2

]
, (35)

for some π̂ij and where we used the difference of two Gaus-
sians to approximate terms exp

[
−γSF|z − µj |2

]
(z−µj) in

the radial basis functions (RBF) expansion in φSF
i .

In the case of trainable nonlinear reaction diffusion
(TNRD) of Chen and Pock [4] with an RBF influence func-
tion we can also rewrite their Eq. (3) in our formalism as

xτ+1 = xτ −∆τ∇xETN[xτ ] (36)

∇xETN[xτ ] = λK>(Kxτ − y)−∑ik F
>
ikφ

TN
i (Fikx

τ )

φTN
i (z) = −∑j ŵij exp

[
− |z−µj |

2

γj

]
.
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Figure 2. The GradNet architecture.

The main differences to our approach are (1) the lack of
noise adaptivity, (2) the lack of preconditioning, and (3) in
the definition of φTN

i . By using similar approximations as
in the previous comparison, Eq. (36) can be seen as the ap-
proximate minimizer of the following image prior

log p(x) = −∑ijk ŵij exp
[
− |Fikx−µj |

2

γj

]
. (37)

Notice that the above methods were derived based on a mix-
ture of Gaussians prior. Our derivation above shows a link
between that prior and the type-1 Gumbel prior (Eq. 18).

6. The GradNet Architecture
We implement the gradient descent from Eq. (33) as a

neural network architecture so that the filters and all the
unknown parameters can be learned directly from data.
An illustration of the network, which we call GradNet is
shown in Fig. 2. Our GradNet is trained in a supervised
manner, i.e., we predefine Q-tuples of training samples
{yq, kq, xGT

q }Qq=1, where yq is a noisy blurry image, kq is
the corresponding blur kernel, and xGT

q is the latent sharp
image. We use 57 RBF functions and fix σj = 10, µj ∈
[−280 : 10 : 280] and σ0 = 105. A GradNet with S stages
learns model parameters Θ = {γτ , σ, fτi , ŵτij}τ=1,...,S ,
which include regularization tradeoff γτ , σ in the noise-
adaptivity λτq , linear filters fτi (2D kernel of Fi), and co-
efficients ŵτij by minimizing the following loss function

minΘ L(Θ) = minΘ

∑Q
q=1

1
2

∣∣CSq (xSq − xGT
q )
∣∣2
2
, (38)

s.t.

{
xτ+1
q = xτq − Λ∇xU [xτq ], τ ∈ [0, . . . , S − 1]

Λ−1 = λτqHq
>Hq + I

σ2
0

+ γτ
∑
ik B

τ
ik
>Bτik,

where CSq is an operator that selects only the valid part of
the latent image and we initialize x0

q by a 3-fold edge taper-
ing of yq . Recall that Bτi is the Toeplitz matrix for circular
convolution with filter fτi . Additionally, instead of learning
arbitrary filters, we define each kernel as fτi =

∑
d α

τ
idtd

|ατi |2
,

where {t1, . . . , t48} is a Discrete Cosine Transform (DCT)
basis, so that |fτi |2 = 1 and they are zero-mean. In ∇xU
we consider functions φi(z) =

∑
j ŵij exp

[
− |z−µj |

2

2(σ2+σ2
j )

]
,

since we found experimentally that they yield the same per-
formance as the functions φi defined in Eq. (33), but are
faster to train. More details, including the backpropagation,
are reported in the supplementary material.

Figure 3. 48 learned filters from the 5th stage of GradNet.

Figure 4. 5 large kernels [23] that are tested with images from [1].

7. Experiments
Training. We choose S = 7 stages and train the network
with a greedy + joint training scheme. First, we greedily
train each of the 7 stages one after the other. Afterwards the
network is finetuned jointly. In the first 4 stages, we simply
use 4 pre-defined pairwise filters as they give a good trade-
off between image deblurring accuracy and computational
cost. Hence, only the regularization parameter and nonlin-
ear functions are trained. From the 5th to 7th stage, we use
48 filters each of size 7 × 7. At each stage, we use 400
training images from the Berkeley segmentation dataset [1]
without cropping. Since real blur data is limited, we syn-
thetically generated motion blur kernels with size 27 × 27
using [3]. We add different amounts of white Gaussian
noise, σ ∈ {2.55, 3.875, 5.1, 6.375, 7.65, 8.925, 10.2}, to
the blurry images. For each stage different image blurs are
used to avoid overfitting. We optimize using 150 iterations
of limited memory BFGS [18]. Greedy training takes 1.5
days and joint training takes half a day with one Titan X
GPU. The code, trained model, dataset and other supple-
mental material will be available on the authors’ webpage.
Figure 3 shows the 48 filters of the 5th stage. Most filters re-
semble directional derivative filters, similar to those learned
by the diffusion network [4]. Figure 2 shows three repre-
sentative non-linear functions in the GradNet architecture,
again similar to those learned in the diffusion network.

Noise-blind deblurring. To thoroughly study our noise-
adaptive approach as well as GradNet, we experiment with
three different datasets. First, we use the popular datasets
of Levin et al. [16] and Sun et al. [29] to assess perfor-
mance with different image scales. These two datasets con-
tain 32 test images (255×255) and 640 test images (roughly
700 × 900), where 8 different blur kernels from [16] are
used. As the amount of blur from these kernels is somewhat
limited, we furthermore test a more challenging setting. We
randomly select 10 images from the Berkeley dataset [1]
and test with 5 large blurs from [23]. The blurs have differ-
ent sizes from 29 to 37 pixels, see Fig. 4. Note that training
and test sets do not overlap, neither in images nor kernels.



Method σ → 2.55 5.10 7.65 10.20

FD [13] (non-blind) 30.03 28.40 27.32 26.52
RTF [24] (σ = 2.55) 32.36 26.34 21.43 17.33
CSF [25] (non-blind) 29.85 28.13 27.28 26.70
TNRD [4] (non-blind) 28.88 28.10 – –
TV-L2 (non-blind) 30.87 28.43 27.59 26.51
EPLL [37] (non-blind) 32.03 29.79 28.31 27.20

EPLL [37] + NE [36] 31.86 29.77 28.28 27.16

EPLL [37] + NA 32.16 30.25 28.96 27.85
TV-L2 + NA 31.05 29.14 28.03 27.16
BD [26] 30.42 28.77 27.91 27.29
GradNet 7S 31.43 28.88 27.55 26.96

Table 1. Average PSNR (dB) on 32 test images from [16].

Method σ → 2.55 5.10 7.65 10.20

FD [13] (non-blind) 30.79 28.90 27.86 27.14
EPLL [37] (non-blind) 32.05 29.60 28.25 27.34
CSF [25] (non-blind) 30.88 28.60 27.65 26.97
TNRD [4] (non-blind) 30.03 28.79 – –

EPLL [37] + NE 32.02 29.60 28.25 27.34

EPLL [37] + NA 32.18 30.08 28.77 27.81
TV-L2 + NA 30.07 28.59 27.60 26.89
GradNet 7S 31.75 29.31 28.04 27.54

Table 2. Average PSNR (dB) on 640 test images from [29].

We blur the test images and add 1%, 2%, 3%, and 4% noise
(i.e., σ = 2.55, 5.10, 7.65, 10.20). Additionally, we quan-
tized the intensities of the noisy blurry observations to 8-bit
to make them more realistic. All results are measured using
the PSNR (see supplementary material for SSIM [31]).

Table 1 shows the performance on the dataset of Levin
et al. [16]. Algorithms are divided into three classes: noise
non-blind (top), noise estimation + non-blind (middle), and
noise-blind (bottom). The non-blind experiments comprise
6 approaches: Fast Deconvolution [13] (FD) and TV-L2 are
well tuned for each noise level and EPLL [37] is tested with
known ground truth noise level. For CSF [25], we use the
official code to train different models for each noise level.
We strictly follow the greedy + joint training mechanism to
obtain the best performing model for each noise level. Since
there is no available deblurring code for TNRD [4], we
modified our code by removing preconditioning and noise
adaptivity and then trained for two exemplary noise levels,
thus ensuring best performance per noise level. For Re-
gression Tree Fields (RTF) [24], we use the only available
pre-trained model (σ = 2.55). We observe that RTFs only
perform well for the noise level on which they are trained.
For other noise levels, the performance drops significantly.
Notice that our noise-blind method GradNet 7S performs
better than CSF and our implementation of TNRD, which
are non-blind and custom-trained for each noise level.

Method σ → 2.55 5.10 7.65 10.20

FD [13] (non-blind) 24.44 23.24 22.64 22.07
EPLL [37] (non-blind) 25.38 23.53 22.54 21.91
RTF [24] (σ = 2.55) 25.70 23.45 19.83 16.94
CSF [25] (non-blind) 24.73 23.61 22.88 22.44
TNRD [4] (non-blind) 24.17 23.76 – –

EPLL [37] + NE [36] 25.36 23.53 22.55 21.90

EPLL [37] + NA 25.57 23.90 22.91 22.27
TV-L2 + NA 24.61 23.65 22.90 22.34
GradNet 7S 25.57 24.23 23.46 22.94

Table 3. Average PSNR (dB) on 50 test images from the Berkeley
segmentation dataset [1] with large blurs (Fig. 4).

Method size → 1282 2562 5122 10242 20482

FD [13] 0.05s 0.08s 0.13s 0.53s 2.3s
CSF [25] 0.06s 0.11s 0.28s 1.35s 5.44s

EPLL [37] 13s 54s 185s 860s >1h
TV-L2 0.26s 0.86s 2.8s 17.2s 63s
BD [26] 7min 26min 40min >1h –
FD [13] + NE [36] 0.35s 0.50s 0.99s 3.74s 15.8s
CSF [25] + NE [36] 0.36s 0.53s 1.14s 4.56s 19.8s
GradNet 7S 0.07s 0.24s 0.78s 3.62s 14.8s

Table 4. Execution time for different algorithms. All methods are
based on Matlab implementations and tested on the same platform
(Intel Core i7, quad-core at 2.4GHz).

To assess the effect of pre-estimating the noise level
(NE), we use the approach of [36] and use the estimated
noise level to adapt EPLL. Finally, the noise-blind exper-
iments rely on 5 different settings: First, we extend two
widely used non-blind techniques, EPLL and TV-L2, to the
noise-blind case using our noise-adaptive (NA) formulation
(see supplementary material for details). We find that our
noise-adaptive formulation not only enables existing tech-
niques to deal with the noise-blind case. Importantly, the
results also compare favorably to the known-noise case. For
EPLL our noise-adaptive formalism improves the perfor-
mance significantly by 0.3–0.7dB over the non-blind setting
despite the fact that we solve a more challenging problem.
This is because the optimal λ does not depend just on im-
age noise, but more generally on a combination of image
noise and approximations made by the image prior. Put
differently, a prior captures the statistics of a whole set of
images, which is not necessarily the best choice for a spe-
cific image. Our adaptive λτ based on the regularized image
residual (Eq. 23) addresses this and outperforms any fixed
λ. For TV-L2 the improvement is equally significant, with
improvements in the same range. Additionally, we show
the result of Bayesian deblurring (BD) [26] and our Grad-
Net. While GradNet does not quite reach the performance
level of EPLL + NA, it is 2 orders of magnitude faster.



(a) Blurry input (b) TV-L2 (c) FD [13] (d) EPLL [37]

(e) Ground Truth (f) GradNet 1 stage (g) GradNet 4 stage (h) GradNet 7 stage

Figure 5. Results for 1% noise case. PSNR results are also shown at the top left corner of the estimated images. Best viewed on screen.

Table 2 shows the performance on the dataset of Sun
et al. [29]. We omit Bayesian deblurring [26] here, since
it does not scale well to large images. Results show that
our noise-adaptive approaches compare favorably to state-
of-the-art priors (EPLL) with separate noise estimation.

Results in Table 3 show that our GradNet is more robust
to large blurs [23] and outperforms EPLL at all noise levels,
on average by 0.75dB. We posit that discriminative training
may enable GradNet to better cope with this challenging
setting. We also combined EPLL with our noise-adaptive
formulation, which again improves the performance.

In all three experimental settings, our noise-adaptive ap-
proach consistently improves the performance of existing
priors, even compared to the non-blind case, which means
that our noise adaptation is robust to image scales, noise lev-
els, and blur kernels. Figs. 5 shows qualitative and quanti-
tative results with 1% noise. Compared to competing meth-
ods, GradNet handles boundaries better and also restores
the ground part of the image more faithfully.

Execution time. Table 4 shows a comparison of execu-
tion times. We see that GradNet scales well to large im-
ages. Although FD and CSF are fast, noise estimation is
quite slow, which is a bottleneck for further efficiency im-
provements. However, we are free of this issue, since our
approach automatically adapts to the noise level. Another
potential benefit of our model is that it is highly paralleliz-
able and well-suitable for computation on the GPU. [4] has

shown that by going from CPU to GPU, their approach can
be sped up around 100 times. Since we are using a similar
architecture, we believe that our network can also enjoy a
significant GPU speed-up. We leave this as future work.

8. Conclusion
Noise is an unavoidable image degradation that must be

accounted for in image restoration and in particular in im-
age deblurring. We focused on the practical case where a
full characterization of noise is not available and must be es-
timated. We showed that a direct application of MAP leads
to a degenerate solution and proposed instead to substitute
the 0-1 loss with a more general family of smooth loss func-
tions. While using general loss functions may lead to infea-
sible high-dimensional integrals or computationally inten-
sive methods, we derive simple bounds that can be com-
puted analytically in closed form. This leads to a novel
method for noise-adaptive deblurring, which can be effi-
ciently implemented as a neural network. The noise adap-
tation leads to significant performance boosts in the noise-
blind and known-noise case. The efficient GradNet yields
state-of-the-art performance even with large blurs.
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