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Abstract

Lacking realistic ground truth data, image denoising
techniques are traditionally evaluated on images corrupted
by synthesized i. i. d. Gaussian noise. We aim to obviate
this unrealistic setting by developing a methodology for
benchmarking denoising techniques on real photographs.
We capture pairs of images with different ISO values and
appropriately adjusted exposure times, where the nearly
noise-free low-ISO image serves as reference. To derive the
ground truth, careful post-processing is needed. We correct
spatial misalignment, cope with inaccuracies in the expo-
sure parameters through a linear intensity transform based
on a novel heteroscedastic Tobit regression model, and re-
move residual low-frequency bias that stems, e.g., from mi-
nor illumination changes. We then capture a novel bench-
mark dataset, the Darmstadt Noise Dataset (DND), with
consumer cameras of differing sensor sizes. One interesting
finding is that various recent techniques that perform well
on synthetic noise are clearly outperformed by BM3D on
photographs with real noise. Our benchmark delineates re-
alistic evaluation scenarios that deviate strongly from those
commonly used in the scientific literature.

1. Introduction

Noise is inherent to every imaging system. Especially
in low-light scenarios, it often severely degrades the image.
Therefore, a large variety of denoising algorithms have been
developed to deal with image noise, e.g. [4, 5, 6, 7, 8, 25,
31, 32, 39]. Even though images with real sensor noise can
be captured easily, it is much less straightforward to know
what the true noise-free image should be. Thus, the quan-
titative evaluation of denoising methods by and large relies
on adding synthetic i. i. d. Gaussian noise to mostly clean
images, e.g. [19, 31, 32]. Photographs with real noise are
at best used for a qualitative analysis [25, 29], but often not
at all. This is quite problematic, since noise in real pho-
tographs is not i. i. d. Gaussian [13, 21], yet even seemingly
minor details of the synthetic noise process, such as whether
the noisy values are rounded to integers, can have a signifi-
cant effect on the relative performance of methods [6, 33].

(a) Low-ISO image (b) High-ISO image

(c) Zoom-in of the low-ISO image (left) and the high-ISO image (right)

Figure 1. An image pair of a nearly noise-free low-ISO and a noisy
high-ISO image from our dataset. Note, that we work with RAW
images and show JPEGs for better display.

The goal of this paper is to address these challenges by
developing a methodology for benchmarking denoising al-
gorithms by means of real photographs. At its core is the
simple idea of capturing pairs of noisy and almost noise-
free images by imaging the same scene from the same view-
point with different analog gains (ISO values), see Fig. 1.
By inversely adjusting the exposure time, the underlying
noise-free image intensities should theoretically stay con-
stant. In practice, we observe various causes for changing
image intensities, prohibiting the direct use of the low-ISO
image as ground truth. Since these scene variations are non-
trivial, we contribute a careful post-processing procedure
that takes into account the statistical properties of the im-
age formation process. As part of this pipeline we propose
a novel heteroscedastic Tobit regression model generalizing
[35], which allows to remove linear dependencies between
the intensities of both images that arise as neither the analog
gain of the sensor nor the exposure time can be controlled
completely accurately in practice. Our model faithfully ac-
counts for clipping as well as signal-dependent noise, which
is crucial as shown experimentally. Furthermore, minimal
changes in the illumination can lead to a low-frequency
bias, which we remove by high-pass filtering the residual
between noisy and reference image in a transformed do-
main in which the noise process is zero-mean. Lastly, mov-
ing objects and minuscule camera shake between exposures
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Figure 2. An overview of the scenes used in our benchmark dataset (subset shown).

are treated by manual annotation and simple Lucas-Kanade
subpixel alignment [23], respectively.

Based on this acquisition pipeline, we capture a real-
world dataset of image noise, called Darmstadt Noise
Dataset (DND). We use 4 consumer cameras, ranging from
a smartphone with a 1/2.3 inch sensor to a full-frame inter-
changeable lens camera. Images are taken across a wide
range of different ISO values in realistic photographic situ-
ations, providing a novel reference dataset for benchmark-
ing denoising algorithms in realistic conditions. Our dataset
consists of 50 scenes and is publicly available.1 Figure 2
shows a subset of the scenes.

Our realistic dataset enables interesting insights into the
performance of recent denoising algorithms. We find that
a number of current techniques (e.g., NCSR [8], WNMM
[15], TNRD [6]) that – based on previous analyses with syn-
thetic i. i. d. Gaussian noise – were presumed to outperform
the by now classic BM3D [7], do in fact perform worse than
BM3D on photographs with real noise. Moreover, our anal-
ysis reveals that noise strengths for consumer cameras are
significantly lower than what is usually assumed in the sci-
entific literature when evaluating denoising algorithms. We
further highlight the importance of applying denoising be-
fore the non-linear camera processing pipeline [30]. Our
findings strongly question the practical relevance of previ-
ous synthetic evaluation methodologies.

2. Related Work
Since noise is abundant in any imaging system, its statis-

tical properties have been well studied. Thorough analyses
have been provided for CCD [18] and CMOS image sen-
sors [9]. One inevitable source of noise is induced by the
stochastic arrival process of photons hitting the sensor – so-
called shot noise. Since it follows a Poisson distribution, its
variance is proportional to the mean intensity at a specific
pixel and is hence not stationary across the whole image.
Other noise sources originate from the electronics within
the sensor chip and from discretization [9, 13, 18].

1https://noise.visinf.tu-darmstadt.de

Although the image noise variance depends on the un-
derlying intensity, the majority of denoising algorithms ig-
nore this and evaluates against artificial, stationary noise,
usually assumed i. i. d. Gaussian, e.g. [31, 32, 39]. Other
works specifically aim to model intensity-dependent noise
[21, 24]. The main idea there is to model the noise dis-
tribution as a heteroscedastic Gaussian, whose variance is
intensity-dependent. This is valid since the Poissonian com-
ponents of the total noise can be approximated well with a
Gaussian. Other approaches first apply a variance stabiliz-
ing transform [11, 26] and subsequently employ a denoising
method for stationary Gaussian noise. However, the trans-
form may make the noise distribution non-Gaussian [37].

There have been attempts to validate denoising algo-
rithms on real data at a small scale [22, 38]. They rely on
recovering a noise-free image by temporal averaging sev-
eral noisy observations. However, they ignore the fact that
the noise process is not zero-mean due to clipping effects
[11], whereas we show that it is important to consider this
bias when creating a denoising ground truth. They also do
not take potentially further non-linear processing of raw in-
tensities [20] into account.

To the best of our knowledge, the only other effort on
benchmarking denoising with real images is the RENOIR
dataset [2]. It also relies on taking sets of images of a static
scene with different ISO values, but the post-processing is
less refined. Image pairs appear to exhibit spatial misalign-
ment, the intensity transform does not model heteroscedas-
tic noise, and low-frequency bias is not removed. Our ex-
periments indicate that ignoring these sources of error sig-
nificantly affects the realism of the dataset. Moreover, [2]
is based on 8 bit demosaiced images while we work with
untainted linear raw intensities.

It is often useful to measure the noise characteristics of
a sensor at a certain ISO level. [10] proposes to illumi-
nate the sensor with approximately constant irradiation and
subsequently aggregates intensity measurements spatially.
This is repeated for different irradiation levels to capture
the intensity dependence of the noise. [12, 28] propose a
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less tedious capture protocol similar to ours, where mul-
tiple exposures of a static scene are used to aggregate the
measurements at every pixel site temporally. In contrast,
our Tobit regression allows to estimate the parameters of
the noise process by having access to just two images.

3. Image Model and Data Acquisition
We begin by motivating the capture protocol and post-

processing for our dataset; we also detail the image forma-
tion process underlying the data acquisition, see Fig. 3.
Image formation. Capturing a noisy image xn can be de-
scribed by adding noise to a latent noise-free image yn and
afterwards clipping the intensities to account for the satura-
tion of pixels on the sensor:

xn = clip
(
yn + εn(yn)

)
, (1)

where clip(y) = min(max(y, 0), 1) and εn can be modeled
as Poisson-Gaussian noise whose strength depends on the
noise-free intensity. Following [3, 11], we approximate the
noise distribution with a heteroscedastic Gaussian

εn(yn) ∼ N
(
0, σn(yn)

)
(2a)

with σ2
n(yn) = βn

1 yn + βn
2 , (2b)

where σn(yn) is called the noise level function with param-
eters βn. Due to the clipping, naı̈ve temporal or spatial
averaging of the noisy observations will yield a bias, i.e.
E [xn | yn] 6= yn. However, we can express E [xn | yn] an-
alytically in terms of yn and σn(yn), see [11] for details,
and denote this relation as

A(yn)
.
= E [xn | yn] . (3)

Ideally, we would want to use yn as ground truth for de-
noising xn. However, since yn is not available, we propose
to take another picture xr that shows the same scene as xn,
but is affected only little by noise. Since the parameters
β of the noise-level-function depend mainly on the camera
sensor and on the ISO value [10], we achieve this by using
a low ISO value to obtain the reference image xr.
Capture protocol and residual errors. As this reference
image xr is captured at a different time instant and with a
different exposure time and ISO value than xn, it is gener-
ated from a second latent image yr with noise parameters

Table 1. Cameras used for capturing the dataset.

Camera # img. Sensor size Res. ISO
[mm] [Mpix]

Sony A7R 13 36× 24 36.3 100 – 25.6k
Olympus E-M10 13 17.3× 13 16.1 200 – 25.6k
Sony RX100 IV 12 13.2× 8.8 20.1 125 – 8k
Huawei Nexus 6P 12 6.17× 4.55 12.3 100 – 6.4k

yr

yn xn

xr

yp
+ strong noise(βn) 

+ clipping

+ little noise(βr) 
+ clipping

LS(α), T, LF

Post-processing:

undo LS(α) undo T undo LF

Figure 3. Image formation process underlying the observed low-
ISO image xr and high-ISO image xn. They are generated from
latent noise-free images yr and yn, respectively, which in turn are
related by a linear scaling of image intensities (LS), a small cam-
era translation (T), and a residual low-frequency pattern (LF). To
obtain the denoising ground truth yp, we apply post-processing to
xr aiming at undoing these undesirable transformations.

βr, analogously to Eq. (1). In practice, we take the ref-
erence at the base ISO level of the camera, while the ISO
value for the noisy image is n times larger. To compensate
this, the reference image is taken with n times the exposure
time. All other camera parameters including aperture, white
balance, and focus remain constant. Since the latent, noise-
free image intensity is proportional to both the ISO value
and the exposure time, in theory our capture protocol leaves
the noise-free image intensities invariant, i.e. yn = yr. As
xr exhibits only very little noise, i.e. xr ≈ yr, we could use
xr instead of yn as denoising ground truth.

For the noise-free intensity to truly stay the same, the
captured scene and the camera have to be static and the il-
lumination has to remain constant. Neither is generally the
case. To minimize the effect of camera shake and scene
variation during acquisition, we developed an Android app
that quickly issues all necessary commands to the camera
over WiFi. We mount the camera on a sturdy tripod with
a stabilizing weight attached. Moreover, we use mirrorless
cameras, which reduces vibrations due to mirror flapping
compared to DSLRs. Despite this careful protocol, we still
observe residual errors that we undo using the pipeline de-
tailed in Sec. 4; post-processing xr results in a new image
yp. In Sec. 5 we show that yp is now sufficiently close to yn
and hence use yp as ground truth for our benchmark.

Further details. For our image database described in Sec. 6
we use four different cameras, see Table 1. The cameras
span a substantial range of sensor sizes from 1/2.3 inch to a
full-frame sensor. We extract linear raw intensities from the
captured images using the free software dcraw. Afterwards
we scale image intensities to fall inside the range [0, 1] by
normalizing with the black and white level.

4. Post-Processing

Our post-processing aims at undoing undesirable trans-
formations between the latent images yn and yr. These
are revealed by looking at the difference images between
the low-ISO image xr and high-ISO image xn (Fig. 4a).
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Figure 4. Difference between blue channels of low- and high-ISO images from Fig. 1 after various post-processing stages. Images are
smoothed for display to highlight structured residuals, attenuating the noise.

Specifically we consider the debiased residual imageR(xr)
with

R(·) .
= A(·)− xn. (4)

From Eq. (3) it immediately follows that the ground truth
debiased residual image R(yn) is zero-mean. However,
from Fig. 4a it is apparent that R(xr) is not zero-mean. We
trace this to four sources of errors that need to be corrected
for in order to relate the intensities of a certain pixel across
the different exposures: (i) In general scenes individual ob-
jects may move during the capture procedure; (ii) spatial
sub-pixel misalignments may be caused by small camera vi-
brations, e.g., due to the mechanical shutter; (iii) the light-
ing of the scene may change slightly during capture, out-
doors for example because of moving clouds, indoors for
example due to light flicker; (iv) linear intensity changes
arise from the fact that neither the analog gain nor the expo-
sure time can be perfectly controlled. Note, that the severity
of (i)–(iii) aggravates the more pictures are taken, thus com-
plicating the use of temporal averaging methods for creat-
ing denoising ground truth in realistic scenes. Our capture
protocol strikes a balance between (i)–(iii) and (iv) by re-
quiring the minimum of only two exposures, while creating
the need to account for linear intensity changes.

We need to cope with these four sources of errors to ob-
tain an accurate ground truth. We address (i) by masking
objects with a simple GUI tool. Our post-processing aims
at undoing (ii)–(iv), c.f . Fig. 3. We model (ii) as a global
2D translation and (iv) as a linear scaling of pixel intensi-
ties, both of which can be inverted given an estimate of their
underlying parameters. Any remaining low-frequency bias
(iii) is removed in a final filtering step, producing the post-
processed image yp. We now detail these steps.

Linear intensity changes. Changing the analog amplifier
gain and the exposure time introduces a linear relationship
between yn and yr (Fig. 4b), since neither of those parame-
ters can be controlled with perfect accuracy:

yn = α(yr) = α1yr + α2, (5)

where the offset α2 accounts for inaccuracies of the
recorded black level. As we do not have access to yn and

yr, we need to estimate α1, α2 from the observed images.
From Eq. (1), we relate xr and xn as

xn = clip
(
yn + εn(yn)

)
(6a)

= clip
(
α(yr) + εn(α(yr))

)
(6b)

∗
= clip

(
α(xr + εr(yr)) + εn(α(yr))

)
(6c)

≈ clip
(
α(xr + εr(xr)) + εn(α(xr))

)
(6d)

= clip
(
α(xr) + α1εr(xr) + εn(α(xr))

)
. (6e)

The equality denoted with ∗ holds for non-clipped pixels in
xr, which are easily identified. The approximation defines
the noise distributions in terms of the observed xr instead
of the unknown intensities yr, since xr is affected only little
by noise. Exploiting that our capture protocol ensures that
α1 and α2 are very close to 1 and 0, respectively, we can
further approximate the scaled noise α1εr(xr) as the noise
of the linearly transformed image α(xr):

α1εr(xr) ∼ N
(
0, α1

√
βr
1xr + βr

2

)
(7a)

≈ N
(

0,
√
βr
1(α1xr + α2) + βr

2

)
∼ εr(α(xr)). (7b)

For details see the supplementary material. We thus recover
α from xn and xr by fitting the regression model

xn ≈ clip
(
α(xr) + εr,n(α(xr))

)
, (8)

where the parameters of the noise level function σr,n of the
compound noise εr,n are given by adding up the parameters
βr and βn due to εr and εn being independent:

εr,n(xr) ∼ N
(
0, σr,n(xr)

)
(9a)

with σ2
r,n(xr) = (βr

1 + βn
1 )xr + (βr

2 + βn
2 ). (9b)

Since the model defined in Eqs. (8) – (9b) accounts for both
clipped observations as well as the heteroscedasticity of the
noise, we call it heteroscedastic Tobit regression.

It generalizes basic Tobit regression [35], which only
models clipped observations with homoscedastic noise. We
can estimate the linear scaling parameters α1, α2 and the
added noise variance parameters βr + βn by maximizing



the log-likelihood (see supplementary material). In Sec. 5
we demonstrate that faithful modeling of the image forma-
tion process with heteroscedastic Tobit regression is crucial
for obtaining accurate estimates of α1, α2. Having recov-
ered α, we use it to linearly transform the intensities of the
low-ISO image to get an intermediate post-processed image

y′p = α(xr) = α1xr + α2. (10)

Figure 4c shows the difference image after the linear cor-
rection. The intensity-dependent bias is removed.

Since the noise parameters βn,βr mainly depend on the
ISO value and characteristics of the sensor [10], we record
them in a controlled laboratory setting using our novel re-
gression model, see Sec. 5.3. Hence, for post-processing
our real dataset, we fix βr as well as βn and only recover
α. In Sec. 5.3 we demonstrate the accuracy of our noise es-
timates by showing that they are in high agreement to those
obtained from spatial averaging [13].

Spatial misalignment. We treat minuscule shifts of the
camera as a global 2D translation that we wish to undo.
While we have experimented with modern DFT-based sub-
pixel alignment [16], we found that the classical Lucas-
Kanade approach [23] works better. Despite its simplicity,
it recovers the translation very well even under strong noise,
see Sec. 5. Having estimated the translation parameters, we
shift y′p using bilinear interpolation to obtain the next inter-
mediate image y′′p . Note that interpolation results in some
smoothing. This is not critical when translating y′p, since it
contains few high frequencies. We avoid interpolating xn
as it contains many high frequencies due to the noise.

Low-frequency residual correction. As we can see in
Fig. 4c, there remains a low-frequency pattern on the de-
biased residual image R(y′′p ). We account that to small
changes in the ambient lighting. Also, when taking pic-
tures under artificial illumination the rolling shutter effect
will cause flickering of the light sources to appear as low-
frequency banding artifacts. Thanks to the noise being
zero-mean in the debiased domain we can estimate the low-
frequency pattern LF by low-pass filtering of R(y′′p ):

LF = smooth
(
R(y′′p )

)
= smooth

(
A(y′′p )− xn

)
. (11)

The final post-processed image yp is obtained by subtract-
ing the low-frequency pattern and inverting the debiasing
step as

yp = A−1
(
A(y′′p )− LF

)
. (12)

We use a guided filter [17] with a large 40 pixel support
for smoothing, which we found to remove structured resid-
uals better than a Gaussian filter in case α1 is not estimated
perfectly. Figure 4d shows the final debiased residual im-
age R(yp) after the low-frequency correction. Now we can
see a mostly zero-mean noise image as we expected, c.f .

Eq. (3). While the filtering adds some structured residuals
tightly localized along strong edges, the magnitude of the
effect is small compared to the noise strength. Also, we
see that the variance of the noise increases with the image
intensity, as expected for heteroscedastic noise.

5. Experimental Validation
We now analyze and validate our approach on simulated

data and demonstrate generalization to real image pairs.

5.1. Post-processing is effective

We first evaluate how accurately our post-processing can
recover the transformation between the latent images yn and
yr. Therefore, we simulate the image formation process of
the reference and noisy image (Fig. 3). Specifically, we use
captured low-ISO images as latent images yn and generate
the other latent image yr by sampling a random transfor-
mation consisting of a spatial translation, linear intensity
changes, and an additive low-frequency pattern. From the
latent images we generate the observations xn and xr by
adding noise and clipping the image intensities. For real-
istic sampling of the transformations, we leverage statistics
estimated on the captured dataset. Specifically, we sample
random horizontal and vertical translations fromN (0, 0.5).
The slope and offset of the linear transformation are sam-
pled from N (1, 0.05) and N (0, 0.0025), respectively. We
generate the low-frequency pattern by sampling random
Fourier coefficients weighted with a peaky Gaussian. We
normalize the pattern in the spatial domain to have zero
mean and a mean magnitude of 0.001. We finally simu-
late xn and xr by applying clipped Poisson-Gaussian noise
to yn and yr, respectively, i.e.

xi ∼ clip
(
βi
1P(yi/β

i
1) +N

(
0,
√
βi
2

))
, i ∈ {n, r}. (13)

To validate the estimation accuracy for a wide range of sce-
narios, we evaluate 11 different parameter settings for the
noise, with βn

1 ranging from 10−4 to 10−1 and βn
2 ranging

from 5 · 10−8 to 10−2. This covers the range of noise pa-
rameters of the consumer cameras used for our dataset. For
the reference image we use the noise level function of the
Sony A7R at base ISO, i.e. βr

1 ≈ 2 · 10−5, βr
2 ≈ 10−8. For

each setting of noise parameters we run 100 trials in total.
We now study how well the proposed post-processing

can undo the simulated transformations. First, we look at
intensity scaling. Figures 5a and 5b show the root mean
squared error (RMSE) of the estimated slope α1 and off-
set α2 of the linear intensity transformation. We com-
pare our proposed Tobit regression model to several base-
lines: First, Tobit regression with homoscedastic noise
[35], i.e. the noise strength is independent of image in-
tensities. Next, homoscedastic and heteroscedastic linear
least squares where the observations are assumed to be un-
clipped. Finally, we compare to the regression model of
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Figure 5. RMSE of recovering the slope (a) and offset (b) of simulated linear intensity scaling, and of recovering translation (c). PSNR to
yn for the post-processed reference image yp and the noisy image xn (d). The x-axes show the strength of the intensity-dependent noise,
with real values in our benchmark lying left of the gray dashed line.

[2], which models clipped observations while ignoring the
intensity-dependence of the noise. We make two main ob-
servations: First, for low noise levels all methods perform
equally well since the difficulty of the estimation problem is
dominated by the other transformations, i.e. translation and
low-frequency bias. Second, for medium to high noise lev-
els our Tobit regression significantly outperforms all base-
lines including [2]. This shows the importance of modeling
the clipped, heteroscedastic observation process faithfully.

Next we turn to alignment. Figure 5c shows the RMSE
in pixels for recovering the simulated translation. As can be
seen, the estimation error is robust to increasing levels of
noise as it remains roughly constant over most of the range
of noise settings. The error increases only for severe noise.

Finally, we evaluate the removal of low-frequency bias.
Figure 5d shows the PSNR between the post-processed im-
age yp and the latent image yn. We compare our post-
processing to a baseline (dashed) that omits the debiasing
step of Eqs. (11) – (12). Especially for high noise levels,
the PSNR of the baseline is significantly lower, emphasiz-
ing that filtering in the debiased domain is important. We
note that the PSNR of yp reduces with higher noise levels,
since the filtering step is not perfect and thus leaks low fre-
quencies of the noise into the post-processed image. This is
not critical, however, since the gap of the PSNR of the noisy
image xn to that of the latent image is still large enough to
accurately measure state-of-the-art denoising performance.

5.2. Quality of ground truth

We now demonstrate that our post-processing pipeline
provides accurate denoising ground truth on our real-world
dataset by considering statistics of the debiased residual im-
ages. We have already seen that the ground truth resid-
ual R(yn) has mean zero given yn. It follows that R(yn)
and A(yn) are linearly uncorrelated (see supplemental ma-
terial). Furthermore, when assuming pixel-wise indepen-
dent noise,R(yn) has zero auto-correlation. We thus expect
the post-processing residual R(yp) to have small linear cor-
relation to A(yp) as well as small auto-correlation. More-
over, we expect R(yp) to have a slightly higher variance
than R(yn), since R(yp) also includes the small amount of
noise that affects xr.

We evaluate the three statistics of R(yp) on our real-
world dataset as well as on simulated data. To make
the simulation as realistic as possible, for each image we
use the parameters for translation and intensity scaling
that were obtained by running post-processing on the real
data and use the corresponding noise level functions. Ta-
ble 2 shows the mean absolute linear correlation coefficient
Corr(R(yp),A(yp)), the mean absolute auto-correlation
Auto-Corr(R(yp)), and the geometric mean of the vari-
ance Var(R(yp)). We observe a significant linear corre-
lation when not applying any post-processing to xr. Our
full post-processing pipeline almost completely removes
the correlation as expected from theoretical considerations,
highlighting its need for obtaining a database with real-
istic image noise. Note that just applying the high-pass
filter on the residual image (5th row) still leaves a sig-
nificant linear correlation, and that the combination of all
three post-processing steps improves upon using any two
post-processing steps. The same holds for auto-correlation,
where our post-processing successfully obtains a residual
image with low auto-correlation, indicating that the pixels
in the noisy residual image are not highly spatially corre-
lated. It is important to note that when only intensity scal-
ing is applied, the auto-correlation is 5× as high on real
data. Since this is the only form of post-processing in the
RENOIR dataset [2], we can conclude that our approach
leads to a much more realistic image noise dataset.

Turning to variance, we see that the variance of the post-
processing residual R(yp) is significantly closer to that of
the ground truth residual R(yn) when all steps are carried
out. The remaining gap to the ground truth residual can
be explained as follows: The post-processed residual is af-
fected by noise in xr and xn, while the ground truth residual
is affected only by the noise in xn. We thus also computed
the variance of the ground truth residualR(yn) for a second
setting, where we sample the noise of xn from the com-
pound noise εr,n (Eq. 9a) instead of εn. Then the differ-
ence in variance between post-processed and ground truth
residual almost vanishes, and the relative variance error de-
creases by an order of magnitude compared to no post-
processing. This demonstrates that our post-processing re-
moves the global effects on the residual image while accu-



Intensity scaling Alignment LF correction Corr(R(yp),A(yp)) Auto-Corr(R(yp)) Var(R(yp)) [∗10−3 ] PSNR(yp, yn)

synth real synth real synth real synth [dB]

0.2144 0.1874 0.1407 0.1270 0.1921 0.1815 43.14
X 0.0305 0.0318 0.0923 0.0843 0.1752 0.1690 46.45

X 0.2093 0.1892 0.0958 0.1024 0.1482 0.1583 46.37
X X 0.0418 0.0474 0.0478 0.0560 0.1387 0.1473 51.18

X 0.0170 0.0175 0.0615 0.0581 0.1659 0.1626 47.31
X X 0.0078 0.0067 0.0610 0.0559 0.1656 0.1621 47.56

X X 0.0118 0.0140 0.0066 0.0198 0.1313 0.1389 53.13
X X X 0.0029 0.0051 0.0067 0.0173 0.1314 0.1385 53.71

Table 2. Statistics of the residual noise image for different combinations of post-processing steps on both synthetic and real data. For
reference: Var(R(yn)) = 0.1222 · 10−3, respectively Var(R(yn)) = 0.1356 · 10−3 when sampling noise for xn from εr,n instead of εn.

rately preserving the noise characteristics.
Importantly, the three test statistics obtained from syn-

thetic experiments differ only marginally from those evalu-
ated on the real captured images, showing that the modeled
transformation process consisting of translations, intensity
scaling, and an additive low-frequency pattern accurately
describes the real transformation between yn and yr.

Finally, Table 2 also shows the PSNR between yn and
yp on simulated data. We see that our full post-processing
achieves the highest PSNR of 53.7 dB. This is significantly
more than what state-of-the-art denoising algorithms can
currently achieve (Sec. 6), leaving enough room for mea-
suring future improvements in terms of PSNR.

5.3. Recording of noise parameters

We calibrate the noise parameters βr and βn on con-
trolled test scenes of a color checker. To estimate βr, we
first run Tobit regression on pairs of images, both taken at
base ISO, which yields an estimate of 2βr (Eq. 9b). We
subsequently recover βn for all other ISO values by esti-
mating βr + βn on a low/high-ISO image pair and after-
wards subtracting βr. To assess the accuracy of our esti-
mates we compare them to those obtained from the indi-
vidual images using the spatial averaging method of [13],
which is designed to work highly accurately on images with
piecewise constant intensities. We assess the agreement of
both methods with the normalized RMSE Φ proposed in
[27]. It measures the relative error of standard deviations,
averaged over pixel intensities. Specifically, we use the
symmetric extension

Φ̃(β, β̂) = 1
2

(
Φ(β, β̂) + Φ(β̂,β)

)
. (14)

The mean error between Tobit regression and [13] is 0.003,
i.e. standard deviations from both methods disagree only
marginally by 0.3% on average. We conclude that Tobit re-
gression produces accurate noise estimates on real data. But
unlike spatial averaging methods, it generalizes to arbitrary
scenes without large homogeneous areas.

We now justify using calibrated noise parameters for
post-processing by showing that the noise parameters

mainly depend on ISO value and camera, but not on ab-
solute exposure time. For fixed combinations of ISO and
camera, we estimate βr and βn across a range of exposure
times of the image pairs. The average error Φ̃ between those
noise estimates is only 0.5%, showing that they are stable
w.r.t. overall exposure times.

6. Benchmark

The proposed DND benchmark for denoising algorithms
consists of 50 scenes selected from our captured images.
We chose images that look like typical photographs, but also
included images with interesting structures that we believe
to be challenging for the algorithms tested. A subset of the
test images is shown in Fig. 2. Table 1 lists the number of
scenes per camera included in the benchmark dataset.

For the task of (non-blind) denoising, we compare
the performance of Weighted Nuclear Norm Minimization
(WNNM) [15], K-SVD [1], Expected Patch Log Likeli-
hood (EPLL) [39], Field of Experts (FoE) [32] with the
filters of [14], Nonlocally Centralized Sparse Representa-
tions (NCSR) [8], and BM3D [7]. Moreover, we bench-
mark two discriminative, “deep” methods: A multilayer
network (MLP) [5] and Trainable Nonlinear Reactive Diffu-
sion (TNRD) [6]. For MLP, we use available trained models
for Gaussian noise with σ ∈ {10, 25, 35}. TNRD is trained
on 400 separate images [6] using code from the authors’
web page. We train 10 models with different Gaussian noise
standard deviations, evenly distributed in log-space from
0.0001 to 0.1, thus covering a reasonable range of noise
levels observed on our real-world dataset.

We apply all algorithms to the noisy images in three dif-
ferent spaces. First, we use the space of linear raw inten-
sities. Since the tested methods are mostly geared toward
Gaussian denoising, we apply a variance stabilizing trans-
formation (VST) prior to denoising as a second setting. This
has the effect of approximately Gaussianizing the noise dis-
tribution. After retrieving the denoising result, we convert
it back to linear raw space by applying an inverse VST.
Specifically, we use the generalized Anscombe transform



Applied on Evaluated on WNNM KSVD EPLL FoE NCSR BM3D MLP TNRD

RAW RAW 46.29 45.53 46.34 45.77 42.86 46.63 42.70 44.98
RAW sRGB 37.64 36.69 37.27 36.09 30.97 37.86 33.74 35.69
RAW+VST RAW 47.10 46.86 46.85 44.11 47.06 47.14 45.70 45.69
RAW+VST sRGB 37.97 37.72 37.55 35.97 37.85 37.95 36.83 36.22
sRGB sRGB 34.44 36.55 33.51 34.49 33.81 34.61 34.14 29.92

Table 3. Mean PSNR (in dB) of the denoising methods tested on our DND benchmark. We apply denoising either on linear raw intensities,
after a variance stabilizing transformation (VST), or after conversion to the sRGB space. Likewise, we evaluate the result either in linear
raw space or in sRGB space. The noisy images have a PSNR of 39.39 dB (linear raw) and 29.98 dB (sRGB).

[34] and the closed-form approximation to its exact unbi-
ased inverse [26]. We parametrize the transformation with
the noise-level functions obtained from the color-checker
data (Sec. 5.3). In a third setting, we use available EXIF
data to simulate the main steps of the camera processing
pipeline [20] that converts linear raw intensities to sRGB
intensities. After white-balancing, we demosaic the image
by linear interpolation. Finally, we convert from the camera
internal color space to sRGB and apply gamma correction.

Since many of the benchmarked algorithms are too slow
to be applied to megapixel-sized images, we crop 20 bound-
ing boxes of 512 × 512 pixels from each image in the
dataset, yielding 1000 test crops in total. They overlap at
most 10% and do not contain pixels that were annotated as
changing between the two exposures. We provide the al-
gorithms with an estimate of the global noise standard de-
viation σ̄ by computing the standard deviation of the resid-
ual noise image R(yp) on each crop. As the different color
channels usually look quite distinct, we denoise each chan-
nel separately. For TNRD and MLP we choose the model
whose σ for training is closest to the ground truth σ̄. For
FoE and EPLL we use a heteroscedastic Gaussian data term
when denoising raw pixel intensities and a homoscedastic
Gaussian data term in the other cases. For evaluation, we
compare the denoised result to the post-processed reference
image yp either in linear raw space or in the sRGB space.

Table 3 shows the PSNR values, averaged over all crops
and color channels (SSIM values [36] are available in the
supplemental material). We make several interesting obser-
vations. As we can see, BM3D is overall the best perform-
ing method followed by WNNM. The other methods per-
form worse. The general tendency also holds across noise
levels. This is quite surprising as the by now classic BM3D
approach was previously considered to have been outper-
formed by the other approaches; our realistic noise dataset
shows that this is not the case. The discriminative meth-
ods fall short, which suggests that they generalize poorly
to noise distributions that were not used during training.
The generative FoE model performs surprisingly compet-
itive in linear raw space, but is the only baseline that per-
forms worse after VST. This suggests that FoE benefits from
the more realistic likelihood in linear raw space.

Furthermore, we see that denoising sRGB images yields
significantly worse results than applying denoising algo-
rithms in raw space, since the noise distribution in sRGB
space is spatio-chromatically correlated [30]. Another ob-
servation is that the amount of noise in our realistic dataset
is lower than what is often used in the scientific literature for
evaluating denoising algorithms using synthetic noise. The
mean PSNR of the noisy images in raw space is 39.38 dB,
which would correspond to a mean noise standard devia-
tion of σ ≈ 2.74 for images with intensities in [0, 255]. For
comparison, most denoising algorithms are evaluated with
noise standard deviations of at least σ = 10, which we be-
lieve to be mostly a historical artefact. Apparently, it was
never really questioned whether they are still appropriate.

7. Conclusion

To benchmark denoising algorithms on real photographs,
we introduced an acquisition procedure based on pairs of
images of the same scene, captured with different analog
gains and exposure time. While in theory the per-pixel
mean intensity should stay constant, in practice we encoun-
tered residual errors. To derive ground-truth data, we pro-
posed and evaluated a procedure for handling residual errors
stemming from inaccurate gain and exposure time changes,
relying on a novel heteroscedastic Tobit regression model.
We also correct for lighting changes in a transformed space,
as well as spatial misalignments. Our experiments showed
the efficacy of this post-processing on simulated data, as
well as its necessity on real photographs. We will make
our novel ground-truth dataset of real photographs publicly
available as a benchmark. We used it for evaluating various
denoising algorithms and observed that BM3D continues to
outperform recent denoising methods on real photographs,
which is in contrast to findings on previously considered
synthetic settings. More generally, our analysis revealed
that the common scientific practice for evaluating denoising
techniques has rather limited relevance for realistic settings.

Acknowledgments: The research leading to these results has
received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007-
2013)/ERC Grant agreement No. 307942, as well as from the EU
FP7 project “Harvest4D” (No. 323567).



References
[1] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An al-

gorithm for designing overcomplete dictionaries for sparse
representation. IEEE T. Image Process., 54(11):4311–4322,
Nov. 2006. 7

[2] J. Anaya and A. Barbu. RENOIR - A dataset for real low-
light image noise reduction. CoRR, abs/1409.8230v8, Oct.
2016. 2, 6

[3] L. Azzari and A. Foi. Gaussian-Cauchy mixture modeling
for robust signal-dependent noise estimation. In ICASSP,
pages 5357–5361, 2014. 3

[4] A. Buades, B. Coll, and J.-M. Morel. Image denoising by
non-local averaging. In ICASSP, volume 2, pages 25–28,
2005. 1

[5] H. C. Burger, C. J. Schuler, and S. Harmeling. Image de-
noising: Can plain neural networks compete with BM3D? In
CVPR, pages 2392–2399, 2012. 1, 7

[6] Y. Chen, W. Yu, and T. Pock. On learning optimized reaction
diffusion processes for effective image restoration. In CVPR,
pages 5261–5269, 2015. 1, 2, 7

[7] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Im-
age denoising by sparse 3-D transform-domain collaborative
filtering. IEEE T. Image Process., 16(8):2080–2095, Aug.
2007. 1, 2, 7

[8] W. Dong, L. Zhang, G. Shi, and X. Li. Nonlocally central-
ized sparse representation for image restoration. IEEE T. Im-
age Process., 22(4):1620–1630, Apr. 2013. 1, 2, 7

[9] A. El Gamal and H. Eltoukhy. CMOS image sensors. IEEE
Circuits and Dev. Mag., 21(3):6–20, May 2005. 2

[10] European Machine Vision Association. EMVA standard
1288: Standard for characterization of image sensors and
cameras, 2012. 2, 3, 5

[11] A. Foi. Clipped noisy images: Heteroskedastic modeling and
practical denoising. Signal Processing, 89(12):2609–2629,
Dec. 2009. 2, 3

[12] A. Foi, S. Alenius, V. Katkovnik, and K. Egiazarian. Noise
measurement for raw-data of digital imaging sensors by au-
tomatic segmentation of nonuniform targets. IEEE Sensors
Journal, 7(10):1456–1461, Oct. 2007. 2

[13] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazar-
ian. Practical Poissonian-Gaussian noise modeling and fit-
ting for single-image raw-data. IEEE T. Image Process.,
17(10):1737–1754, Oct. 2008. 1, 2, 5, 7

[14] Q. Gao and S. Roth. How well do filter-based MRFs model
natural images? In DAGM, pages 62–72, 2012. 7

[15] S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear
norm minimization with application to image denoising. In
CVPR, pages 2862–2869, 2014. 2, 7

[16] M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup. Effi-
cient subpixel image registration algorithms. Optics Letters,
33(2):156–158, Jan. 2008. 5

[17] K. He, J. Sun, and X. Tang. Guided image filtering. IEEE T.
Pattern Anal. Mach. Intell., 35(6):1397–1409, 2013. 5

[18] G. E. Healy and R. Kondepudy. Radiometric CCD cam-
era calibration and noise estimation. IEEE T. Pattern Anal.
Mach. Intell., 16(3):267–276, Mar. 1994. 2

[19] J. Jancsary, S. Nowozin, and C. Rother. Loss-specific train-
ing of non-parametric image restoration models: A new state
of the art. In ECCV, volume 7, pages 112–125, 2012. 1

[20] H. C. Karaimer and M. S. Brown. A software platform for
manipulating the camera imaging pipeline. In ECCV, vol-
ume 1, pages 429–444, 2016. 2, 8

[21] C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and W. T. Free-
man. Automatic estimation and removal of noise from a sin-
gle image. IEEE T. Pattern Anal. Mach. Intell., 30(2):299–
314, Feb. 2008. 1, 2

[22] X. Liu, M. Tanaka, and M. Okutomi. Practical signal-
dependent noise parameter estimation from a single noisy
image. IEEE T. Image Process., 23(10):4361–4371, 2014. 2

[23] B. D. Lucas and T. Kanade. An iterative image registra-
tion technique with an application to stereo vision. In IJCAI,
pages 674–679, 1981. 2, 5

[24] F. Luisier, T. Blu, and M. Unser. Image denoising in mixed
Poisson-Gaussian noise. IEEE T. Image Process., 20(3):696–
708, Mar. 2011. 2

[25] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.
Non-local sparse models for image restoration. In ICCV,
pages 2272–2279, 2009. 1
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