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Abstract. Motivated by the detection of prohibited objects in carry-on
luggage as a part of avionic security screening, we develop a CNN-based
object detection approach for multi-view X-ray image data. Our contri-
butions are two-fold. First, we introduce a novel multi-view pooling layer
to perform a 3D aggregation of 2D CNN-features extracted from each
view. To that end, our pooling layer exploits the known geometry of the
imaging system to ensure geometric consistency of the feature aggrega-
tion. Second, we introduce an end-to-end trainable multi-view detection
pipeline based on Faster R-CNN, which derives the region proposals and
performs the final classification in 3D using these aggregated multi-view
features. Our approach shows significant accuracy gains compared to
single-view detection while even being more efficient than performing
single-view detection in each view.

1 Introduction

Baggage inspection using multi-view X-ray imaging machines is at the heart
of most aviation security screening programs. Due to inherent shortcomings in
human inspection arising from gradual fatigue, occasional erroneous judgments,
and privacy concerns, computer-aided automatic detection of dangerous goods
in baggage has long been a sought-after goal [19]. However, earlier approaches,
mostly based on hand-engineered features and support vector machines, fell far
short of providing detection accuracy comparable to human operators, which is
critical due to the sensitive nature of the task [3, 8]. Thanks to recent advances
in object detection using deep convolutional neural networks [10,11,22,23] with
stunning success in photographic images, the accuracy of single-view object de-
tection in X-ray images has improved significantly [16]. Yet, most X-ray machines
for baggage inspection provide multiple views (two or four views) of the screen-
ing tunnel. An example of this multi-view data is shown in Fig. 1. Multi-view
approaches for these applications have been only used in the context of classical
methods, but whether CNN-based detectors can benefit is unclear. In fact, [16]
found that a naive approach feeding features extracted from multiple views si-
multaneously to a fully-connected layer for detection leads to a performance drop
over the single-view case.

Fueled by applications such as autonomous driving, 3D object detection has
lately gained momentum [9]. These 3D detection algorithms, unlike their 2D
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Fig. 1. An example of multi-view X-ray images of hand luggage containing a glass
bottle.

counterparts, are not general purpose and rely on certain sensor combinations or
employ heavy prior assumptions that make them not directly applicable to multi-
view object detection in X-ray images. Some of these 3D detection algorithms
assume that the shape of the desired object is known in the form of a 3D model
[2,24]. Yet, 3D models of objects are more difficult to acquire compared to simple
bounding box annotations and a detector that relies on them for training may
not generalize well on objects with highly variable shape such as handguns.
Other methods use point clouds from laser range finders alone or in conjunction
with RGB data from a camera [5, 21]. Our setup, in contrast, provides multi-
view images of objects in a two channel (dual-energy) format, which is rather
different from stereo or point cloud representations. Using 3D convolutions and
directly extending existing 2D methods is one possibility, but the computational
cost and memory requirements can be prohibitive when relying on very deep
CNN backbone architectures such as ResNet [14].

In this work, we extend the well-known Faster R-CNN [23] to multi-view
X-ray images by employing the idea of late fusion, which enables our use of
very deep CNNs to extract powerful features from each individual view, while
deriving region proposals and performing the classification in 3D. We introduce a
novel multi-view pooling layer to enable this fusion of features from single views
using the geometry of the imaging setup. This geometry is assumed fixed all
through training and testing and needs to be calculated once. We do not assume
further knowledge of the detected objects as long as we have sufficient bounding
box annotations in 2D. We show that our method, termed MX-RCNN, is not
only highly flexible in detecting various hazardous object categories with very
little extra knowledge required, but is also considerably more accurate while even
being more efficient than performing single-view detection in the four views.

2 Related Work

Inspired by the impressive results in 2D object detection, several recent works
[20,30,32,33] build upon a 2D detection in an image and then attempt to estimate
the 3D object pose. These methods, however, rely predominantly on a set of prior
constraints such as objects being located on the ground for estimating the 3D
position of the object. These prior constraints do not appear easily extensible
to our problem case, since objects inside bags can take an arbitrary orientation
and position.
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Other approaches have tried to work directly with depth data [18, 27, 28],
where most methods voxelize the space into a regular grid and apply 3D con-
volutions to the input. While this yields the most straightforward extension of
well-proven 2D detectors, which are based on 2D convolution layers, increasing
the dimensionality of convolution layers can only be done at very low resolution
as denser voxelizations of the space result in unacceptably large memory con-
sumption and processing time. Our method also uses the idea of 3D convolutions
but defers them to very late stages in which we switch from 2D to 3D. In doing
so, we enable the detector to leverage high image resolution in the input while
extracting powerful features that leverage view-consistency.

A number of methods use the geometry of the objects as prior knowledge to
infer a 6-DoF object pose. These methods mainly rely on CAD models or ground
truth 3D object models and match either keypoints between these models and
2D images [2, 24, 34] or entire reconstructed objects [25]. Borrowing ideas from
robotics mapping, the estimated pose of an object produced by a CNN can
also be aligned to an existing 3D model using the iterative closest points (ICP)
algorithm [13].

Hang et al. [29] proposed a method most closely related to ours, which ag-
gregates features extracted from multiple views of a scene using an elementwise
max operation among all views. Yet, unlike our multi-view pooling layer this
aggregation is not geometry-aware.

Despite the recent focus on the problem of visual object detection, its appli-
cation to X-ray images has not received as much attention. Some older meth-
ods [3, 8] exist for this application, but they perform considerably weaker than
deep learning-based methods [1]. However, the use of CNNs on X-ray images
for baggage inspection has been limited to the direct application of basic 2D
detection algorithms, either with pretraining on photographic images or train-
ing from scratch. Jaccard et al. [16] propose a black-box approach to multi-view
detection by extracting CNN features from all views, concatenating them, and
feeding them to fully-connected layers. Yet, the accuracy fell short of that of
the original single-view detection. To the best of our knowledge, there exists no
previous end-to-end learning approach that successfully uses the geometry of the
X-ray machine to perform a fusion of features from various views.

3 Multi-view X-ray R-CNN

We build on the standard Faster R-CNN object detection method [23], which
works on single-view 2D images and is composed of two stages. They share a
common feature extractor, which outputs a feature map. The first stage consists
of a Region Proposal Network (RPN) that proposes regions of interest to the
second stage. Those regions are then cut from the feature map and individually
classified. The RPN uses a fixed set of 9 standard axis-aligned bounding boxes
in 3 different aspect ratios and 3 scales, so-called anchor boxes. Those anchor
boxes are defined at every location of the feature map. The RPN then alters their
position and shape by learning regression parameters in training. Additionally,
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Fig. 2. Schema of the hybrid 2D-3D MX-RCNN architecture. The features of each
view are extracted independently in 2D and combined in the multi-view pooling layer
(marked in red). The resulting common 3D feature volume is passed to the RPN and
to the RoI pooling layer where regions are extracted for evaluation in the 3D R-CNN
layers.

a score to distinguish between objects and background is learned in a class-
agnostic way, which is used for non-maximum suppression and to pass only a
subset of top-scoring region proposals to the second stage. The second stage
classifies the proposals and outputs additional regression values to fine-tune the
bounding boxes at the end of the detection process.

MX-RCNN. The basic concept of our Multi-view X-ray R-CNN (MX-RCNN)
approach is to perform feature extraction on 2D images to be able to utilize
standard CNN backbones including ImageNet [26] pretraining. This addresses
the fact that the amount of annotated X-ray data is significantly lower than
that of photographic images. We then combine the extracted feature maps of
different projections, or views, into a common 3D feature space in which object
detection takes place, identifying 3D locations of the detected objects.

Our MX-RCNN uses a ResNet-50 [15] architecture, where the first 4 out
of its 5 stages are used for feature extraction on the 2D images. Then a novel
multi-view pooling layer, provided with the fixed geometry of the imaging setup,
combines the feature maps into a common 3D feature volume.

The combined feature space is passed to a RPN, which has a structure similar
to the RPN in Faster R-CNN [23], but with 3D convolutional layers instead of
2D ones. Further, it has 6 ×A regression parameter outputs per feature volume
position, where A is the number of anchor boxes, because for 3D bounding boxes
6 regression parameters are needed. Following Faster R-CNN, we define those
regression parameters as

tx = (x−xa)/wa ty = (y−ya)/ha tz = (z−za)/da

tw = log(w/wa) th = log(h/ha) td = log(d/da) ,
(1)

where the index a denotes the parameters of the anchor box and with bounding
box center (x, y, z), width w, height h, and depth d.

The RPN proposes volumes to be extracted by a Region-of-Interest pooling
layer with an output of size 7×7×7 to cover a part of the feature volume similar
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in relative size to the 2D case. The 3D regions are then fed into a network similar
to the last stage of ResNet-50 in which all convolutional and pooling layers are
converted from 2D to 3D and the size of the last pooling kernel is adjusted to fit
the feature volume size. In contrast to the 2D stages, these 3D convolutions are
trained from scratch since ImageNet pretraining is not possible. Afterwards, the
regions are classified and 3D bounding box regression parameters are determined.
A schema of our MX-RCNN is depicted in Fig. 2.

3.1 K-means clustering of anchor boxes

When we expand the hand-selected aspect ratios of the Faster R-CNN anchor
boxes of 1:1, 1:2, and 2:1 at 3 different scales to 3D, we arrive at a total of
21 anchor boxes. Since this number is large and limits the computational effi-
ciency, we aim to improve over these standard anchor boxes. To that end, we
assess the quality of the anchor boxes as priors for the RPN. Specifically, we use
their intersection over union (IoU) [17] with the ground-truth annotations of the
training set. We instantiate anchor boxes at each position of the feature map
used by the RPN and for each ground-truth annotation we find its highest IoU
with an anchor box. For the standard anchor boxes expanded to 3D, this yields
an average IoU of 0.5.

To improve upon this while optimizing the computational efficiency, we follow
the approach of the YOLO9000 object detector [22] and use k-means clustering
on the bounding box dimensions (width, height, depth) in the training set to
find priors with a better average overlap with the ground-truth annotations. We
employ the Jaccard distance [17]

dJ(a, b) = 1 − IoU(a, b) (2)

between boxes a and b as a distance metric. We run k-means clustering for various
values of k. Fig. 3 shows the average IoU between ground-truth bounding boxes
and the closest cluster (blue, circles). To convert clusters into anchor boxes, they
have to be aligned to the resolution of a feature grid. To account for this, we also
plot the IoU between the ground-truth bounding boxes and the closest cluster
once it has been shifted to the nearest feature grid position (red, diamonds). We
choose k = 10, which achieves an average IoU of 0.56 for the resulting anchor
boxes distributed in a grid. This is clearly higher than using the standard 21
hand-selected anchor boxes, while maintaining the training and inference speed
of a network with only 10 anchor boxes.

3.2 Multi-view pooling

Our proposed multi-view pooling layer maps the related feature maps of the 2D
views of an X-ray recording into a common 3D feature volume by providing it
with the known geometry of the X-ray image formation process in the form of
a weight matrix. To determine the weights, we connect each group of detector
locations related to one pixel in the 2D feature map to their X-ray source to form
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Fig. 3. Average IoU between ground-truth boxes and the closest cluster from k-means
clustering as a function of k. The IoU is calculated for anchor boxes centered on the
ground-truth boxes (blue, circles) and for anchor boxes distributed in the grid of the
feature map (red, diamonds). Even a low number of clusters already outperforms the
standard hand-selected anchor boxes (IoU of 0.5).

beams across the 3D space. For each of the output cells of the 3D feature volume,
we use the volume of their intersection with the beams normalized by the cell
volume as relative weight factors. The multi-view pooling layer then computes
the weighted average of the feature vectors of all beams for each output cell,
normalized by the number of views in each X-ray recording; we call this variant
MX-RCNNavg. Additionally, we implemented a version of the multi-view pooling
layer that takes the maximum across the weighted feature vectors of all beams for
each output cell; we call this variant MX-RCNNmax. An example of a mapping,
specific to our geometry, is shown in Fig. 4.

3.3 Conversion of IoU thresholds

Since the IoU in 3D (volume) behaves differently than in 2D (area), we aim to
equalize for this. Specifically, we aim to apply the same strictness for spatial
shifts that are allowed per bounding box dimension such that a proposed object
is still considered a valid detection. We assume that the prediction errors of the
bounding box regression values are equally distributed across all dimensions. For
simplicity, we further assume that errors are only made up of shifts compared
to the ground-truth bounding boxes. In 2D, the allowed relative shift s per
dimension of a bounding box of arbitrary dimensions for an IoU threshold of t2
is given by

s(t2) = 1 −
√

2t2/(t2+1) . (3)

The same relative shift applied to an arbitrarily sized 3D bounding box would
require the threshold

t3(s) = (1−s)3/(2−(1−s)3) . (4)
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Fig. 4. Example plot illustrating the relevant beams (color-coded per view) in the
multi-view pooling of a specific output cell (marked in red). The actual geometry
differs slightly.

An IoU threshold t2 applied to the 2D case therefore becomes

t3(t2) =

√
2t2/(1+t2)

3

2 −
√

2t2/(1+t2)
3 (5)

for use with 3D bounding boxes if the same strictness per dimension is to be
maintained. The evaluation of the Pascal VOC challenge [7] for detection in
2D images uses a standard threshold of 0.5, which yields a threshold of 0.374 in
the 3D detection case.

3.4 Computational cost

Our single-view Faster R-CNN implementation reaches a frame rate of 3.9 fps
for training and 6.1 fps for inference on a NVIDIA GeForce GTX Titan X GPU.
4 frames or images need to be processed for one complete X-ray recording. Our
MX-RCNN achieves frame rates of 4.6 fps for training and 7.6 fps for inference;
note that it can share work across the 4 frames as they are processed simultane-
ously. Thus, our method is 18% faster in training and 25% faster in inference. We
attribute this to the lower number of regions extracted per recording, because
of the common classification stage in the multi-view detector, despite the higher
computational costs for its 3D convolutional layers.
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(a) Bottom left view (b) Bottom right view

(c) Right side view (d) Bottom center view

Fig. 5. False-color images of all views of an example X-ray recording of baggage con-
taining a handgun. The handgun is easier to spot in certain images depending on their
angle of projection. Bounding boxes show the original 2D annotations (black) and the
reprojected 3D annotations (red).

4 Multi-view X-Ray Dataset

Lacking a standardized public dataset for this task, we leverage a custom dataset1

of dual-energy X-ray recordings of hand luggage made by an X-ray scanner used
for security checkpoints. The X-ray scanner uses line detectors located around
the tunnel through which the baggage passes. Its pixels constitute the x-axis in
the produced image data while the movement of the baggage, respectively the
duration of the X-ray scan and the belt speed, define the y-axis of the image.
Each recording consists of four different views, three from below and one from
the side of the tunnel the baggage is moved through. The scans from each view
produce two grayscale attenuation images from the dual-energy system, which
are converted into a false-color RGB image that is used for the dataset. This is
done to create images with 3 color channels that fit available models pretrained
on ImageNet-1000 [26]. An example recording is shown in Fig. 5.

The following types of recordings are available in the dataset:
Glass Bottle. Recordings of baggage containing glass bottles of different shapes

1 Unfortunately, we are not able to release the dataset to the public. Researchers
wishing to evaluate on our dataset for comparison purposes are invited to contact
the corresponding author.
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Table 1. Number of recordings (images) in the different subsets of the dataset.

Type / Subset Train Validation Test Total

Glass Bottle 358 (1432) 40 (160) 209 (836) 607 (2428)
TIP Weapon 1944 (7776) 216 (864) 0 (0) 2160 (8640)
Real Weapon 0 (0) 0 (0) 464 (1856) 464 (1856)
Negative 0 (0) 0 (0) 950 (3800) 950 (3800)

Total 2302 (9208) 256 (1024) 1623 (6492) 4181 (16724)

and sizes.
TIP Weapon. Synthetic recordings of baggage where a pre-recorded scan of
a handgun is randomly projected onto a baggage recording by a method called
Threat Image Projection (TIP) [4]. A limited set of handguns is repeatedly used
to generate all recordings.
Real Weapon. Recordings that contain a handgun of various types and are
obtained using a conventional scan without the use of TIP.
Negative. Recordings containing neither handguns nor glass bottles.

The synthetic TIP images are only used for training and validation; the
complete scans with real weapons are used for testing to evaluate if the trained
network generalizes. A detailed overview of the different subsets of the data is
given in Table 1. The dataset is split into its subsets such that views belonging to
one and the same recording are not distributed over different subsets. Pascal
VOC-style annotations [7] with axis-aligned 2D bounding boxes per view are
available for two different classes of hazardous objects, weapon and glassbottle.

4.1 3D bounding box annotations

To be able to train and evaluate our multi-view object detection with 3D an-
notations, we generate those out of more commonly available 2D bounding box
annotations. Specifically, we generate axis-aligned 3D bounding boxes from sev-
eral axis-aligned 2D bounding boxes. Because all our X-ray recordings have at
most one annotated object,2 there is no need to match multiple annotations
across the different views. In case of multiple annotated objects per image, a
geometrically consistent matching could be used.

Recall the specific imaging setup from above. If we now align the 2D y-
axis (belt direction) to the 3D z-axis, the problem of identifying a suitable 3D
bounding box reduces to a mapping from the 2D x-axis to a xy-plane in 3D. The
lines of projection between the X-ray sources and the detectors corresponding
to the x-axis limits of the 2D bounding boxes define the areas where the object
could be located in the xy-plane per view. We intersect those triangular areas
using the Vatti polygon clipping algorithm [31] and choose the minimum axis-
aligned bounding box containing the resulting polygon as an estimation of the

2 The number of annotated objects is a restriction of the dataset only; our detector
is able to handle multiple objects per image.
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Fig. 6. Example of the 3D bounding box generation. The lines of projection (color-coded
per view) for the 2D bounding box positions overlap in the xy-plane of the 3D volume.
The resulting polygon of their intersection (pink) is enclosed by the 3D bounding box
(red). The actual geometry differs slightly.

object’s position in 3D space. For the z-axis limits of the 3D bounding box, we
take the mean of the y-limits of the 2D bounding boxes. An example of the
generation process is shown in Fig. 6. Note that while our process of deriving
3D bounding boxes is customized to the baggage screening scenario, analogous
procedures can be defined for more general imaging setups.

Note that in the ideal case, all projection lines would intersect in the 4 cor-
ners of the bounding box. However, due to variances in the annotations made
independently for each view, this does not hold in practice. As a result, the
bounding box enclosing the intersection polygon is an upper bound of the es-
timated position of the object in 3D space. We thus additionally project the
3D bounding boxes back to the 2D views to yield 2D bounding boxes that in-
clude the geometry approximation made in the generation of the 3D bounding
box. The difference between an original 2D annotation and a reprojected 3D
bounding box can be seen in Fig. 5. We use these 2D annotations to train a
single-view Faster R-CNN as a baseline that assumes the same object localiza-
tion as the multi-view networks trained on the 3D annotations. If more precise
3D bounding boxes are desired, they could be obtained from joint CT and X-ray
recordings, which are becoming more common in modern screening machines.

5 Experiments

5.1 Training

We scale all images used for training and evaluation by a factor of 0.5 so they
have widths of 384, 384, 352, and 416 px for the views 0 through 3 of each
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X-ray recording. For all experiments we use a ResNet-50 [14] with parameters
pretrained on ImageNet-1000 [26]. The first two stages of the ResNet-50 are fixed
and we fine-tune the rest of the parameters. If not mentioned otherwise, hyper-
parameters remain unchanged against the standard implementation of Faster
R-CNN. All networks are trained by backpropagation using stochastic gradient
descent (SGD).

As a baseline we train a standard implementation of single-view Faster R-
CNN on the training set without data augmentation. Single-view Faster R-CNN
detects objects on all views independently. We start with a learning rate of 0.001
for the first 12 epochs and continue with a rate of 0.0001 for another 3 epochs.

For training and evaluation of our MX-RCNN, we use a mini-batch size of 4
with all related views inside one mini-batch. We reduce the number of randomly
sampled anchors in each 3D feature volume from 256 to 128 to better match
the desired ratio of up to 1:1 between sampled positive and negative anchors.
Additionally, we reduce the number of sampled RoIs to 64 to better match the
desired fraction of 25% foreground regions that have an IoU of at least 0.5 with
a 3D ground-truth bounding box. We accordingly reduce the learning rate by
the same factor [12]. In the multi-task loss of the RPN, we change the balancing
factor λ for the regression loss and the normalization by the number of anchor
boxes to an empirically determined factor of λ = 0.05 without additional nor-
malization. In practice, this ensures good convergence of the regression loss. We
initialize all 3D convolutional layers as in the standard Faster R-CNN imple-
mentation. We then train MX-RCNNavg on the training set for 28 epochs with a
learning rate of 0.0005. A cut of the learning rate did not show any benefit when
evaluating with the validation set. Additionally, we train MX-RCNNmax for 17
epochs with the same learning rate. Again, a learning rate cut did not show any
further improvement on the validation set.

5.2 Evaluation criteria

Since there is no established evaluation criterion for our experimental setting,
we are using the average precision (AP), which is the de-facto standard for
the evaluation of object detection tasks. Specifically, we compare the trained
networks with the evaluation procedure for object detection of the Pascal VOC
challenge that is in use since 2010 [6]. To be considered a valid detection, a
proposed bounding box must exceed a certain threshold with a ground-truth
bounding box. If multiple proposed bounding boxes match the same ground-
truth bounding box, only the one with the highest confidence is counted as a
valid detection. The Pascal VOC challenge uses an IoU of 0.5 as threshold for
the case of object detection in 2D images. As discussed in Section 3.3, to apply
the same strictness for relative shifts that are allowed per dimension, we set
this threshold to 0.374 for the evaluation of 3D bounding boxes per recording.
Nevertheless, the corresponding IoU threshold we derived for 3D is an estimate.
Hence, we additionally project the proposed 3D bounding boxes onto the 2D
views and evaluate them per image with a threshold of 0.5 to directly compare
to standard 2D detection.
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Table 2. Experimental results of the different networks evaluated on the test set. For
the multi-view networks the evaluation was done with the proposed 3D bounding boxes
and their projections onto the 2D views.

Method Single-view MX-RCNNavg MX-RCNNmax

Evaluation 2D 3D 2D 3D 2D

Weapon AP 85.56 % 92.28 % 90.32 % 89.01 % 87.73 %
Glassbottle AP 96.90 % 98.84 % 95.37 % 98.74 % 95.62 %
Mean AP 91.23 % 95.56 % 92.84 % 93.88 % 91.68 %
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(b) Glassbottle class.

Fig. 7. Precision-recall curves of the different networks evaluated on the test set. The
plots show the precision-recall curves of the single-view (orange, dashed), MX-RCNNavg

(turquoise, solid) and MX-RCNNmax (pink, dotted) networks. For the multi-view net-
works the precision-recall curves are shown for the evaluation in 3D.

5.3 Experimental results

The standard single-view Faster R-CNN [23] used as a baseline reaches 91.2%
mean average precision (mAP) per image on the test set (average over classes).
With 93.9% mAP per recording, our MX-RCNNmax is 2.7% points better than
the baseline when evaluating in 3D and 0.5% points better when projected to
2D (91.7% mAP per image). Using a weighted average in the multi-view pooling
layer of MX-RCNN (MX-RCNNavg) shows consistently better detection accuracy
than MX-RCNNmax except for the AP of the glassbottle class projected to 2D.
With an mAP per recording for 3D evaluation of 95.6%, our MX-RCNNavg is
4.4% points better than the baseline when evaluating in 3D and 1.7% better
when projected to 2D (mAP of 92.9%). Detailed numbers of the evaluation can
be found in Table 2. Additionally, precision-recall curves are provided in Fig. 7
to allow studying the accuracy at different operating points. We observe that
the ranking of the curves of the different networks within each object class is
consistent with their AP values. Moreover, it becomes apparent that the benefit
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Table 3. Tolerance of MX-RCNN for disabling individual views when evaluating on the
test set. The proposed 3D bounding boxes were directly evaluated without reprojection
to 2D.

(a) MX-RCNNavg

Views all w/o bottom left w/o bottom right w/o right side

Weapon AP 92.28 % 82.34 % 85.57 % 53.19 %
Glassbottle AP 98.84 % 91.58 % 98.59 % 92.42 %
Mean AP 95.56 % 86.96 % 92.08 % 72.80 %

(b) MX-RCNNmax

Views all w/o bottom left w/o bottom right w/o right side

Weapon AP 89.01 % 74.40 % 83.69 % 58.86 %
Glassbottle AP 98.74 % 89.89 % 97.93 % 77.26 %
Mean AP 93.88 % 82.14 % 90.81 % 68.06 %

of the proposed multi-view approach is particularly pronounced in the important
high-recall regime.

5.4 Ablation study

To test the importance of the different views in our multi-view setup on the
final detection result, we disabled individual views while evaluating and in the
mapping provided to the multi-view pooling layer, respectively. The evaluation
was done for both variants of the multi-view pooling layer on the test set and
we directly compared the proposed 3D bounding boxes to 3D ground-truth an-
notations with 0.374 as IoU threshold without reprojecting them to 2D. The
detailed results can be found in Table 3. We notice that the tolerance for miss-
ing views from below the tunnel is higher than for a missing side view. Also, the
impact is more pronounced on weapons whose appearance is more affected by
out-of-plane rotations. In general, the use of weighted averaging when combining
features in the multi-view pooling seems to be more fault tolerant than the use
of a weighted maximum, with the exception of weapons in combination with a
missing side view. The results show that the network indeed relies on all views
to construct the feature volume and to propose and validate detections.

6 Conclusion

In this paper we have introduced MX-RCNN, a multi-view end-to-end trainable
object detection pipeline for X-ray images. MX-RCNN is a two stage detector
similar to Faster R-CNN [23] that extracts features from all views separately
using a standard CNN backbone and then fuses these features together to shape
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a 3D representation of the object in space. This fusion happens in a novel multi-
view pooling layer, which combines all individual features leveraging the geome-
try of the X-ray imaging setup. An experimental analysis on a dataset of carry-on
luggage containing glass bottles and hand guns showed that when trained with
the same annotations, MX-RCNN outperforms Faster R-CNN applied to each
view separately and is computationally cheaper than separate processing of all
views. We also showed in an ablation study that the method works by far better
when the view angles do not all fall in one line (degenerate 3D case), showing
that the pipeline is indeed leveraging its 3D feature representation.
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mann GmbH.
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