UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

AAAI 2018, New Orleans, USA

Simon Meister, Junhwa Hur, and Stefan Roth

Department of Computer Science, TU Darmstadt

Deep Networks for Optical Flow

- Deep CNNs for flow
 - e.g. FlowNet: Encoder-Decoder network
 - Given two images, outputs dense flow
 - Real-time inference with high accuracy
 - Supervision from synthetic datasets

Domain Mismatch

Training domains

Domains of interest

Training with Realistic Data

Unsupervised deep learning for optical flow

- Train on the target domain
- No ground truth flow
- Unlabeled frame pairs (e.g. from video)
- Design proxy loss

Unsupervised Loss (Baseline)

- Use classical optical flow constraints [Yu et al.]
 - Backward-warp I_2 (using w^f) with **Bilinear sampling** [Jaderberg et al.] of I_2 at $w^f(x)$
 - Data loss E_D : brightness difference of I_1 and backward-warped I_2
 - First order smoothness loss E_S : difference of neighboring flows

Brightness constancy: $I_1(x) - I_2(x + w^f(x))$

Unsupervised Loss (Baseline)

- Issues with this most basic loss
 - Lighting changes \rightarrow brightness constancy violated
 - Occlusions \rightarrow can't compare $I_1(x)$ and $I_2(x + w^f)$
 - First-order smoothness may be limiting

• Apply advanced ideas from classical optical flow to deep learning

7

- Robustness to lighting changes (census transform)
- Occlusion handling (bidirectional flow)
- Second-order smoothness

- Compute **bidirectional** flow (w^f, w^b) with CNN
 - FlowNetC (or any other optical flow network)

• Given bidirectional flow

- Forward-backward check [Sundaram et al.]: compare $w^{f}(x)$ and $w^{b}(x + w^{f}(x))$
 - Should be inverse to each other for non-occluded *x*
- Threshold \rightarrow Occlusion flag o^f (swap f/b for o^b)
- Below? Consistency loss *E_C* for difference

Sundaram et al. (2010), "Dense point trajectories by GPU-accelerated large displacement optical flow"

- Bidirectional image-based loss
 - Compare I_1 and backward-warped I_2 (using w^f)
 - Bilinear sampling [Jaderberg et al.] at $w^f(x)$
 - Compare I_2 and backward-warped I_1 (using w^b)

- Data loss E_D
 - Census transform [Stein] of I_1 and $I_2(x + w^f)$
 - Invariant to many changes due to lighting
 - Only at non-occluded pixels ($o^f = 0$)
 - Same for I_2 and $I_1(x + w^b)$

0

1

- Smoothness loss *E*_S
 - Second-order regularizer [Trobin et al.]
 - Penalizes large second derivatives of the flow w^{f} (or w^{b})
 - Encourages collinear neighbors
 - The only loss at occluded pixels ($o^f = 1$)

Trobin et al. (2008), "An unbiased second-order prior for high-accuracy motion estimation"

Iterative refinement

- Network stacking [llg et al.]
- $\mathsf{FlowNet}\mathbf{C} \rightarrow \mathsf{FlowNet}\mathbf{S} \rightarrow \dots$
- Input first flow estimates and warped images

Ilg et al. (2017), "FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks"

Training Schedule

- Curriculum (100% unsupervised)
 - 1. SYNTHIA pre-training
 - Large synthetic dataset with simple lighting
 - 2. KITTI raw
 - Large real-world driving dataset
 - Excluding small number of frames with ground truth flow

- No need for *specifically generated* synthetic optical flow datasets
 - FlyingChairs, FlyingThings3D, ...

Results

Metrics

- Average Endpoint Error (AEE)
 - Average euclidean distance of prediction to ground truth flow vectors
- KITTI Outliers
 - Ratio of pixels where flow estimate is wrong by both 3 pixels and 5% (at least)

- Comparing Baseline [Yu et al.] vs. UnFlow-C
 - Brightness constancy \rightarrow census loss
 - Reduces AEE by **35%**

Data loss	Smoothness Occlusion	AEE (All)	Outliers (All)
Brightness	1st-order	7.20	31.93%
Census	1st-order	4.66	20.85%

Yu et al. (2016), "Unsupervised learning of optical flow via brightness constancy and motion smoothness"

• Comparing Baseline [Yu et al.] vs. UnFlow-C

- 1st \rightarrow 2nd order smoothness
 - Reduces AEE by **5%** and outliers by **17%**

Data loss	Smoothness Occlusion	AEE (AII)	Outliers (All)
Brightness	1st-order	7.20	31.93%
Census	1st-order	4.66	20.85%
Census	2nd-order	4.40	17.22%

- Comparing Baseline [Yu et al.] vs. UnFlow-C
 - Forward-backward mechanisms (occlusion masking & consistency)
 - Reduces AEE by **14%**

Data loss	Smoothness	Occlusion	AEE (All)	Outliers (All)
Brightness	1st-order		7.20	31.93%
Census	1st-order		4.66	20.85%
Census	2nd-order		4.40	17.22%
Census	2nd-order	Forward-backward check	3.78	16.44%

- Comparing Baseline [Yu et al.] vs. UnFlow-C
 - UnFlow reduces AEE and outliers by **48%**
 - Similar observations on KITTI 2015

Data loss	Smoothness	Occlusion	AEE (AII)	Outliers (All)
Brightness	1st-order		7.20	31.93%
Census	1st-order		4.66	20.85%
Census	2nd-order		4.40	17.22%
Census	2nd-order	Forward-backward check	3.78	16.44%

Yu et al. (2016), "Unsupervised learning of optical flow via brightness constancy and motion smoothness"

Baseline vs. UnFlow (KITTI 2015)

Baseline

Flow error (red = high, blue = low)

UnFlow

Flow error (red = high, blue = low)

Benchmarks (KITTI) – non-finetuned

- Comparing supervised networks vs. UnFlow
 - Similar networks trained on synthetic domains
 - UnFlow reduces AEE by up to 49% (FlowNetS, 2012)

Method	AEE (All) 2012 train	AEE (All) 2015 train
FlowNetS+ft [Dosovitskiy et al.]	7.5	
FlowNet2-C [Ilg et al.]		11.36
UnFlow-C [ours]	3.78	8.80

Dosovitsky et al. (2015), "FlowNet: Learning optical flow with convolutional networks"

Ilg et al. (2017), "FlowNet 2.0: Evolution of optical flow estimation with deep networks"

Benchmarks (KITTI) – non-finetuned

- Comparing supervised networks vs. UnFlow
 - UnFlow even performs slightly better on off-domain data

Method	AEE (All) 2012 train	AEE (All) 2015 train	AEE (All) Middlebury
FlowNetS+ft [Dosovitskiy et al.]	7.5		0.98
FlowNet2-C [Ilg et al.]		11.36	
UnFlow-C [ours]	3.78	8.80	0.88

Dosovitsky et al. (2015), "FlowNet: Learning optical flow with convolutional networks"

Conclusion

• UnFlow

- Comprehensive unsupervised proxy loss
- **48%** improvement over brightness constancy baseline
- Outperforms synthetic off-domain supervision

Code open-sourced at https://github.com/simonmeister/UnFlow

Supplementary slides

Supervised Fine-tuning

- 1. Unsupervised training
- 2. (optional) Supervised fine-tuning
 - KITTI 2012 & 2015 train

Method	AEE (All) 2012 test	Outliers 2015 test
FlowNet2-ft-kitti [Ilg et al.]	1.8	10.41%
UnFlow-CSS-ft	1.7	11.11%

Competetive fine-tuning performance without pre-training with special synthetic datasets

Ilg et al. (2017), "FlowNet 2.0: Evolution of optical flow estimation with deep networks"

Benchmarks (KITTI) – non-finetuned

- Comparing previous unsupervised networks vs. UnFlow
 - Similar networks & training schedules
 - UnFlow reduces AEE by up to **66%**

Method	AEE (All) 2012 train
UnsupFlownet [Yu et al.]	11.3
DSTFlow [Ren et al.]	10.43
UnFlow-C [ours]	3.78

Yu et al. (2016), "Unsupervised learning of optical flow via brightness constancy and motion smoothness"

Ren et al. (2017), "Unsupervised deep learning for optical flow estimation"

- Comparing Baseline [Yu et al.] vs. UnFlow
 - Training on SYNTHIA instead of FlyingChairs slightly improves AEE
 - Our baseline re-implementation is more accurate than the results reported by Yu et al. (AEE of **11.3** vs. our **8.26**)

Data loss	Smoothness	Occlusion	AEE (AII)	Outliers (All)
Brightness	1st-order		8.26	
Brightness	1st-order		7.20	31.93%
Census	1st-order		4.66	20.85%
Census	2nd-order		4.40	17.22%
Census	2nd-order	Forward-backward check	3.78	16.44%

FlowNetS / UnsupFlownet / UnFlow-CSS

UnsupFlownet - KITTI 2012 flow error

UnFlow-CSS - KITTI 2012 flow error

29

UnsupFlowNet - predicted flow

UnFlow-CSS - predicted flow

Baseline vs. UnFlow (KITTI 2015)

Baseline

Flow error (red = high, blue = low)

UnFlow

Flow error (red = high, blue = low)

UnFlow-CSS-ft (KITTI 2015 *test*)

Flow Result

UnFlow-CSS-ft (KITTI 2015 *test*)

Flow Result

Flow Error

Flow Error

Baseline vs. UnFlow (KITTI 2015)

Flow error (red = high, blue = low)

Baseline

Flow error (red = high, blue = low)

UnFlow

Baseline vs. UnFlow (KITTI 2015)

Flow error (red = high, blue = low)

Baseline

Flow error (red = high, blue = low)

