

Code available! github.com/visinf/n3net

Motivation

- K-nearest neighbors (KNN) selection is building block for many methods, e.g. non-local image restoration algorithms [1, 3]
- However: KNN selection is not differentiable
- This prevents learning the feature space for matching

We propose a deterministic and differentiable relaxation to KNN and leverage it in a **novel non-local processing layer (N³ block)**.

$$\alpha_i^1 \equiv -d(q, x_i)$$

Step 3 – Continuous relaxation

Relax discrete w^j to continuous expectation \bar{w}^j :

$$\bar{w}_i^{j+1} \equiv \mathbb{E}\left[w_i^{j+1} \mid \bar{\alpha}^{j+1}, t\right] = \mathbb{P}\left[w^{j+1} = i \mid \bar{\alpha}^{j+1}, t\right]$$

Relax discrete logit update:

$$\bar{\alpha}_i^{j+1} \equiv \bar{\alpha}_i^j + \log(1 - \bar{w}_i^j) \quad \text{with} \quad \bar{\alpha}_i^1 \equiv \alpha_i^1$$

Use \bar{w}^j to define continuous NN: $\bar{X}^j \equiv \sum \bar{w}^j_i x_i$

Recovers hard KNN as $t \rightarrow 0$.

 w^j define deterministic path within the simplex

Neural Nearest Neighbors Networks Tobias Plötz Stefan Roth

Contributions

- Unlike soft attention mechanisms, e.g. [6], retrieve multiple weighted averag yielding a set of non-local neighbors.
- Go beyond differentiable k-nearest neighbors classifiers [2, 5], retrieving a set of nonlocal neighbors instead of non-local averaging of labels.
- Do not assume fixed set of target neighbors unlike [7].
- Back-propagating through the non-local layer enables feature learning in the context of non-local processing [1, 3].

3 N³Net: Neural Nearest Neighbors Network Improved accuracy from augmenting local networks with N³ block

References

- [1] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian. Image denoising with block-matching and 3D filtering. SPIE, 2006.
- [2] J. Goldberger, G. E. Hinton, S. T. Roweis, R. R. Salakhutdinov. Neighbourhood components analysis. NIPS*2005
- [3] S. Lefkimmiatis. Universal denoising networks: A novel CNN-based network architecture for image denoising. CVPR, 2018
- [4] T. Plötz, S. Roth. Benchmarking denoising algorithms with real photographs. CVPR, 2017. [5] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, D. Wierstra. Matching networks for one shot learning. In NIPS*2016.
- [6] X. Wang, R. Girshick, A. Gupta, K. He. Non-local neural networks. CVPR, 2018
- [7] K. Q. Weinberger, L. K. Saul. Distance metric learning for large margin nearest neighbor classification. JMLR, 10:207–244, Feb. 2009.
- [8] K. Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, P. Fua. Learning to find good correspondences. CVPR, 2018.

[9] K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. Trans. on Image Proc., 2017. Acknowledgements. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant agreement No. 307942.

σ	ρ		_
D	-	5	1

- Baseline architecture: DnCNN [9]
- 3x 6-layer DnCNN interleaved with 2x N³ Block (k=7)
- Training on 400 images of BSDS dataset
- Individual model per noise level

Results:

- Continuous nearest neighbors with learned embedding outperforms KNN selection on static embedding
- Significant and consistent gain over DnCNN baseline
- Outperforms other strong local denoise
- Outperforms competing non-local met selection on fixed feature space

Model	Matching on	PSNR [dB]	SSIM
$\overline{1 \times \text{DnCNN} (d=17)}$	_	29.97	0.879
$1 \times \text{DnCNN} (d=18)$	_	29.92	0.885
$3 \times \text{DnCNN} (d=6)$, KNN block ($k=7$)	noisy input	30.07	0.891
$3 \times \text{DnCNN} (d=6)$, KNN block ($k=7$)	DnCNN output $(d=17)$	30.08	0.890
$3 \times \text{DnCNN} (d=6)$, Concrete block ($k=7$)	learned embedding	29.97	0.889
$\overline{2 \times \text{DnCNN} (d=6), \text{N}^3 \text{ block} (k=7)}$	learned embedding	29.99	0.888
$3 \times \text{DnCNN} (d=6), \text{ N}^3 \text{ block} (k=7)$	learned embedding	30.19	0.892

Ablation study on Urban100

Learning the embedding space with our N3

Experiments: RAW Image [

- Baseline architecture: DnCNN [6]
- 3x 6-layer DnCNN interleaved with 2x
- Trained on 400 images of BSDS, 800 images images of Waterloo dataset
- Single model for wide range of noise I
- Data augmentations to approximately

Results:

- New state of the art on raw image denoising benchmark DND [4]
- Outperforms DnCNN baseline
- Outperforms dedicated sRGB denoising methods

nCNN b	aseline	ć									
isers ethods v	vith KN	IN									
n	PSNR [dE	B] SSIN	1		~~~~			- CF	****		138.00
tput (<i>d</i> =17) bedding	29.97 29.92 30.07 30.08 29.97	0.87 0.88 0.89 0.89 0.89	5 1 0		Clean	BM3	D: 25.21 dB	FFDN	et: 24.92 dB	NN3D: 25.0	DO dB
bedding bedding	29.99 30.19	0.88 0.89				F		Ē		FFFF	
0: block work	ks best.		_	Nois	sy: 14.16 dB	DnCN	IN: 24.76 dB	UNLN	et: 25.47 dB	N ³ Net: 25.	57 dB
Deno « N ³ Bloc										1 Contraction of the second se	
mages c	of DIV2	K, and	3793	8	Noisy: 18	.76 dB	BM3D: 31.36	dB	Noisy: 23.54 dB	BM3D: 35	5.37 dB
level fur y invert			essin	5				- all have			
	Rav			GB	TWSC: 32	.52 dB	CBDNet: 31.40	D dB	TWSC: 34.53 dB	CBDNet: 3	5.43 dB
BM3D DnCNN N ³ Net	47.37	SSIM 0.9724 0.9760 0.9767	PSNR 37.78 38.08 38.32	SSIM 0.9308 0.9357 0.9384	1115	11.1		11.12		XX	
TWSC CBDNet	_	_	37.94 38.06	0.9403 0.9421		A			1 C		
Doculto	on Darmet		no Dotoc	ot [4]							

Results on Darmstadt Noise Dataset [4]

Experiments: Correspondence Classification

- Baseline architecture: Context Normalization Net [8] (CNNet)
- Added one N³ block (k=3) at middle layer of CNNet
- Input: Set of pairs of image coordinates
- Output: Classification score for each putative correspondence

erc

Local

network

Results: N³ block significantly improves accuracy across all settings

Set12

BSD6

Urbar

TECHNISCHE UNIVERSITÄT DARMSTADT

PSNR values [dB] for Gaussian denoising (higher is better).									
lset	σ	BM3D	NLNet	UNLNet	NN3D	DnCNN	RED30	FFDNet	N ³ Net
2	25	29.96	30.31	30.27	30.45	30.44	_	30.43	30.55
	50	26.70	27.04	27.07	27.24	27.19	27.24	27.31	27.43
	70	25.21	-	-	25.61	25.56	25.71	25.81	25.90
968	25	28.56	29.03	28.99	29.19	29.23	-	29.19	29.30
	50	25.63	26.07	26.07	26.19	26.23	-	26.29	26.39
	70	24.46	-	-	24.89	24.85	-	25.04	25.14
an100	25	29.71	29.92	29.80	30.09	29.97	_	29.92	30.19
	50	25.95	26.15	26.14	26.47	26.28	26.32	26.52	26.82
	70	24.27	-	-	24.53	24.36	24.63	24.87	25.15
			Non-local	Local	CNN base	elines	Ours		

DnCNN: 32.04 dB N³Net: 32.42 dB

DnCNN: 35.27 dB N³Net: 35.35 dB

	St. Peter / St. Peter			St. Pe	ter / Reid	chstag	Brown / Brown		
Thr.	No Net	CNNet	N ³ Net	No Net	CNNet	N ³ Net	No Net	CNNet	N ³ Net
5°	0.014	0.271	0.316	0.0	0.173	0.231	0.054	0.236	0.293
10°	0.030	0.379	0.431	0.038	0.337	0.442	0.110	0.333	0.391
20°	0.071	0.522	0.574	0.111	0.500	0.601	0.232	0.463	0.510

Mean average precission values (higher is better) for different error thresholds. N³Net achieves highest accuracy for indoor and outdoor scenes.